基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
SNP数据作为重要的基因变异数据,是目前生物信息学领域中重要的课题之一,但由于SNP数据中存在较多的冗余和噪声,因此对SNP数据进行特征提取尤为重要.论文针对SNP数据少样本、高维度的问题和SNP位点之间具有强相关性的特点,在K-Means聚类中引入互信息,提出了一种改进的聚类算法K-MIM,将其应用于SNP选择中.K-MIM算法解决了传统的K-Means算法不能挖掘出SNP位点之间内在关系的问题,并在医院提供的临床数据实验结果表明,K-MIM/蚁群算法所筛选出的信息SNP子集,较K-Means/蚁群、MCMR、ReliefF等算法所筛选出的信息SNP子集,具有更高的非信息SNP子集重构度和更好的分类效果.
推荐文章
改进的k-means算法在入侵检测中的应用
入侵检测
聚类分析
k均值
相异度
基于改进磷虾群算法的K-means算法
磷虾群算法
聚类算法
精英引领
最佳聚类数
动态分群
k-means算法的研究与改进
聚类
划分方法
数据样本
阈值
基于Spark的改进K-means算法的并行实现
聚类算法
简化轮廓系数
形态学相似距离
相似性度量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进的K-Means算法在SNP选择中的应用
来源期刊 计算机与数字工程 学科 工学
关键词 单核苷酸多态 SNP选择 特征选择 互信息 K-Means
年,卷(期) 2020,(8) 所属期刊栏目 信息处理与网络安全
研究方向 页码范围 1943-1947,1964
页数 6页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.08.025
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (26)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(6)
  • 参考文献(2)
  • 二级参考文献(4)
2014(6)
  • 参考文献(5)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
单核苷酸多态
SNP选择
特征选择
互信息
K-Means
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导