基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于股票市场变化存在着多因素、非线性、时变性等特点,传统预测模型忽视了股指波动影响因素特征提取的合理性与准确性,导致预测效果不理想.鉴于此,提出了融合情感分析和SVM_LSTM特征提取模型的股指预测方法以提高股指预测精度,将SVM和LSTM方法相结合建立SVM_LSTM模型,提取影响股指波动的情感极性特征、涨跌趋势特征以及股票技术指标特征,进而弥补影响股指波动的存在因素实现股指预测.通过与传统股指预测方法相比较,该方法实验结果的 MSE(均方差)达到了0.172 2,比传统模型的均方差缩小了约0.083 7,证明了该预测方法在准确度上效果更好.
推荐文章
基于集成学习的股票指数预测方法
股指预测
集成学习
模型聚合
机器学习
分类器
指数行情
基于结构修剪神经网络的股票指数预测模型
股票指数预测
预测指标体系
BP算法
贝叶斯分析
网络结构修剪
基于正则化LSTM模型的股票指数预测
LSTM模型
正则化方法
股票指数
预测
数据多维处理LSTM股票价格预测模型
长短期记忆网络
股价预测
组合模型
萤火虫算法
最小二乘支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合情感分析与SVM_LSTM模型的股票指数预测
来源期刊 软件导刊 学科 工学
关键词 股指预测 技术指标 LSTM 情感分析
年,卷(期) 2020,(8) 所属期刊栏目 人工智能
研究方向 页码范围 14-18
页数 5页 分类号 TP301
字数 5068字 语种 中文
DOI 10.11907/rjdk.192512
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑山红 长春工业大学计算机科学与工程学院 60 249 8.0 12.0
2 李万龙 长春工业大学计算机科学与工程学院 66 472 9.0 19.0
3 杨妥 长春工业大学计算机科学与工程学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (73)
共引文献  (18)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(8)
  • 参考文献(1)
  • 二级参考文献(7)
2017(12)
  • 参考文献(3)
  • 二级参考文献(9)
2018(5)
  • 参考文献(1)
  • 二级参考文献(4)
2019(6)
  • 参考文献(4)
  • 二级参考文献(2)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
股指预测
技术指标
LSTM
情感分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导