基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
短文本一般具有篇幅较短、特征稀疏、信息量不明显等特性,直接使用传统的文本分类方法进行分类的效果一般不理想.潜在狄利克雷分布(LDA)主题模型生成的概率主题有助于使文本以语义为中心并减少稀疏性,进而使用概率主题信息对短文本进行特征扩展成为了可能.为了充分利用LDA主题模型的优势,论文提出了一种基于概率主题模型和文本互扩展的短文本分类方法,首先基于短文本自身语义信息的互扩展,然后依据LDA主题模型预测后得到的"文档—主题"和"主题—词"分布信息以及短文本的相异词关系实现短文本的特征扩展,最后使用支持向量机(SVM)分类方法进行短文本的分类处理.论文的分析验证结果表明,相较于单纯使用向量空间模型(VSM)来表征短文本,论文所提方法能有效改善对不同类别的短文本分类性能.
推荐文章
基于自身特征扩展的短文本分类方法
短文本
稀疏
信号弱
扩展
离散度
相关度
CNN-ELM混合短文本分类模型
文本分类
卷积神经网络
极速学习机
面向审计领域的短文本分类技术研究
审计问题分类
审计领域
信息增益
SVM决策树
短文本分类
审计报告
融合主题的CLSTM短文本情感分类
主题
滑动窗口
上下文
长短期记忆模型
情感分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于概率主题和文本互扩展的短文本分类技术
来源期刊 计算机与数字工程 学科 工学
关键词 短文本 概率主题 特征扩展 潜在狄利克雷分布 支持向量机
年,卷(期) 2020,(10) 所属期刊栏目 信息处理与网络安全
研究方向 页码范围 2430-2435
页数 6页 分类号 TP391.1
字数 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.10.024
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈庆春 16 66 5.0 7.0
2 类先富 5 2 1.0 1.0
3 周国剑 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (118)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(2)
  • 参考文献(0)
  • 二级参考文献(2)
1975(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(7)
  • 参考文献(2)
  • 二级参考文献(5)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短文本
概率主题
特征扩展
潜在狄利克雷分布
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导