基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
鉴于传统的统计模型未考虑变形中的随机扰动和混沌现象,借助小波分析、灰色Verhulst模型(G-Verhulst)和差分自回归移动平均模型(ARIMA)分析统计模型的残差,以充分挖掘变形观测资料中的数据特性.首先利用小波分析对残差序列去噪,提取出不同频率的信号,然后分别利用G-Verhulst模型和ARIMA模型进行建模预测,最后将统计模型预测值和残差预测值叠加,建立了一种考虑残差的小波G-Verhulst-ARIMA大坝变形组合预测模型.实例应用结果表明,与不考虑残差的组合模型及使用GM(1,1)模型(EGM)代替G-Verhulst模型的组合模型相比,该模型拟合和预测时的均方误差均小于其他两组模型,有效提高了预测精度,为建立大坝安全监控模型提供了新思路.
推荐文章
基于小波的基坑变形监测组合预测模型
小波去噪
组合模型
时间序列
人工神经网络
灰色系统
基坑
基于 SVM-ARIMA的大坝变形预测模型
大坝变形
预测模型
支持向量机
ARIMA
最优加权组合预测模型在大坝变形监测中的应用
最优加权组合模型
大坝安全监测
线性回归
时间序列
BP神经网络
一种基于小波变换和ARIMA的短期电价混合预测模型
电价预测
小波变换
ARIMA模型
时间序列分析
电价突变
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 考虑残差的小波G-Verhulst-ARIMA大坝变形组合预测模型及应用
来源期刊 水电能源科学 学科
关键词 变形预测 残差 小波分析 灰色Verhulst模型 ARIMA模型
年,卷(期) 2020,(12) 所属期刊栏目 大坝安全与监测|DAM SAFETY AND MONITORING
研究方向 页码范围 94-97
页数 4页 分类号 TV698.1
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (139)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(6)
  • 参考文献(3)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变形预测
残差
小波分析
灰色Verhulst模型
ARIMA模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电能源科学
月刊
1000-7709
42-1231/TK
大16开
武汉市洪山区珞喻路1037号华中科技大学内
38-111
1983
chi
出版文献量(篇)
9307
总下载数(次)
26
论文1v1指导