基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对车牌图像分辨率低、视觉质量差等问题,提出一种针对模糊车牌图像的超分辨率重建方法.在FSRCNN的基础上进行如下改进:特征提取阶段采用双通道替代单通道,增强对图像有用特征信息的提取;映射部分使用深度可分离卷积替代原有卷积并减少映射层数,提升训练速度;重建部分采用子像素卷积操作替代反卷积层,抑制反卷积层产生的人工冗余信息.实验结果表明,该方法的重建结果与其他方法相比,图像质量在主观和客观方面都有所改善,训练时间也有所减少.
推荐文章
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
基于改进卷积神经网络的图像超分辨率算法研究
低分辨率
超分辨率
卷积神经网络
图像处理
复原
基于金字塔式双通道卷积神经网络的深度图像超分辨率重建
深度图像
超分辨率重建
双通道卷积神经网络
金字塔式网络结构
车牌超分辨率重建与识别
车牌识别
超分辨率重建
OpenCV库
固定邻域回归
支持向量机
人工神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的模糊车牌图像超分辨率重建方法
来源期刊 计算机应用与软件 学科 工学
关键词 模糊车牌图像 超分辨率重建 卷积神经网络 深度学习
年,卷(期) 2020,(11) 所属期刊栏目 图像处理与应用
研究方向 页码范围 159-164,228
页数 7页 分类号 TP3
字数 语种 中文
DOI 10.3969/j.issn.1000-386x.2020.11.027
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 贾瑞生 42 297 10.0 15.0
2 邓梦迪 2 0 0.0 0.0
3 田煜 2 0 0.0 0.0
4 赵超越 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (81)
共引文献  (71)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(1)
  • 二级参考文献(0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(8)
  • 参考文献(2)
  • 二级参考文献(6)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(11)
  • 参考文献(3)
  • 二级参考文献(8)
2016(10)
  • 参考文献(3)
  • 二级参考文献(7)
2017(16)
  • 参考文献(1)
  • 二级参考文献(15)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模糊车牌图像
超分辨率重建
卷积神经网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导