基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对分类模型在处理基因表达小样本高维度数据集上存在的分类准确性不足、过拟合、计算复杂度大等问题,提出一种改进模型Two Boosting Deep Forest(TBDForest).在多描部分采用均等式特征利用方法对原始特征进行变换;在分类过程中考虑到模型所集成的每个森林的拟合质量,将上层最重要的部分判别特征输入到下一级联层,在层间改善类分布问题;对原级联层采用子层级联的结构,增加样本训练机会,减少训练开销,避免模型对参数的依赖.通过在五种疾病基因表达小样本数据集上的验证结果表明,改进的模型增强分类算法在小样本数据集的分类性能上达到了更好的分类效果.
推荐文章
一种基于小样本数据的装备故障预测方法
小样本
故障预测
支持向量机
相关向量机
基于随机森林分类模型的DDoS攻击检测方法
随机森林
数据流信息熵
分布式拒绝服务
检测
基于小样本集弱学习规则的KNN分类算法
机器学习
K-最近邻分类
小样本集
标签数据
弱学习规则
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于基因表达小样本数据的级联森林分类模型
来源期刊 计算机应用与软件 学科 工学
关键词 基因表达数据 深度森林 小样本 分类模型
年,卷(期) 2020,(11) 所属期刊栏目 算法
研究方向 页码范围 165-171
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1000-386x.2020.11.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 齐林 78 806 12.0 26.0
2 范怡敏 1 0 0.0 0.0
3 帖云 10 11 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (33)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(6)
  • 参考文献(3)
  • 二级参考文献(3)
2018(5)
  • 参考文献(3)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
基因表达数据
深度森林
小样本
分类模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导