基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统机器学习在水下目标识别方面严重依赖先验知识、识别精度低的难题,提出基于深度学习的水下目标辨识方法.该方法通过短时傅里叶变换进行时频分析获取水下目标信号的LOFAR谱图,将目标从一维序列空间映射至类别可分性更高的二维矢量空间.利用深度卷积神经网络自适应实现对目标LOFAR图特征提取,最后采用全连接层将特征变换至类别空间,用Softmax函数实现水下目标智能辨识.结合7类不同水下目标的实测舰船辐射噪声数据从网络模型结构参数、激活函数、池化方法以及数据片段长度等方面对深度学习分类精度进行验证.结果表明,利用二维时频谱图变换和卷积神经网络相结合的方法可有效降低噪声的影响,分类精度可达98.57%.验证了基于深度学习的水下目标辨识方法的有效性,为海洋装备智能目标探测与识别提供了一种新的研究思路与方法.
推荐文章
基于深度卷积特征的水下目标智能识别方法
无人水下航行器
智能识别
深度卷积神经网络
迁移学习
基于轻量级深度网络的目标识别方法
深度学习
目标识别
轻量化
嵌入式应用
基于水声环境空间中多模态深度融合模型的目标识别方法研究
水下目标识别
多模态
水声环境
深度模型
目标特性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的水下目标识别方法研究
来源期刊 舰船科学技术 学科
关键词 水下目标识别 时频分析 深度学习 卷积神经网络
年,卷(期) 2020,(23) 所属期刊栏目 信息智能
研究方向 页码范围 141-145
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.3404/j.issn.1672-7649.2020.12.028
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (5)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
水下目标识别
时频分析
深度学习
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
舰船科学技术
半月刊
1672-7649
11-1885/U
大16开
北京市朝阳区科荟路55号院
1979
chi
出版文献量(篇)
6974
总下载数(次)
20
总被引数(次)
26106
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导