基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对红外与可见光图像融合过程中出现的细节损失严重、视觉效果不佳等问题,提出了基于多尺度几何变换模型的融合方法.首先,采用改进的视觉显著性检测算法对红外与可见光图像进行显著性检测,并构建显著性矩阵;然后,对红外与可见光图像进行非下采样剪切波变换,得到相应的低频和高频子带,并采用显著性矩阵对低频子带进行自适应加权融合,同时采用简化的脉冲耦合神经网络并结合多方向拉普拉斯能量和对高频子带进行融合处理;最后,通过逆变换得到融合图像.实验结果表明,该方法能够有效提升融合图像的对比度并保留源图像的细节信息,融合图像具有良好的视觉效果,且多个客观评价指标均表现良好.
推荐文章
基于CNN与直方图规定化的红外与低照度可见光图像融合
可见光图像
红外图像
图像融合
直方图规定化
卷积神经网络
基于双边滤波和NSST的红外与可见光图像融合
图像融合
双边滤波
高斯滤波
非下采样剪切波变换
可见光与红外CPCT彩色图像融合研究与实现
CPCT
彩色图像融合
融合评价
粒子滤波
融合跟踪
基于AWNV的红外与可见光图像Tetrolet域融合方法研究
Tetrolet变换
图像融合
红外和可见光图像
邻域方差
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于显著矩阵与神经网络的红外与可见光图像融合
来源期刊 激光与光电子学进展 学科
关键词 图像处理 图像融合 显著性检测 非下采样剪切波变换 脉冲耦合神经网络
年,卷(期) 2020,(20) 所属期刊栏目 图像处理|Image Processing
研究方向 页码范围 68-78
页数 11页 分类号 TP391
字数 语种 中文
DOI 10.3788/LOP57.201007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (21)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(11)
  • 参考文献(2)
  • 二级参考文献(9)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(13)
  • 参考文献(5)
  • 二级参考文献(8)
2018(10)
  • 参考文献(3)
  • 二级参考文献(7)
2019(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像处理
图像融合
显著性检测
非下采样剪切波变换
脉冲耦合神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
激光与光电子学进展
半月刊
1006-4125
31-1690/TN
大16开
上海市嘉定区清河路390号(上海市800-211信箱)
4-179
1964
chi
出版文献量(篇)
9127
总下载数(次)
28
总被引数(次)
35767
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导