基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对作物病虫害领域存在实体关系交叉关联、多源异构数据聚合能力差、知识共享困难等问题,利用知识图谱以结构化的形式描述实体间复杂关系的优势,该研究提出了一种基于深度学习的作物病虫害知识图谱构建方法.该方法在领域本体的基础上,以一种与领域语料相适应的新标注模式实现实体和关系的联合抽取.将实体和关系抽取任务转化为序列标注问题,对实体和关系进行同步标注,有效提高标注效率;为了解决重叠关系抽取问题,直接对三元组建模而不是分别对实体和关系建模,通过标签匹配和映射即可获得三元组数据.利用来自转换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)-双向长短期记忆网络(Bi-directional Long-Short Term Memory,BiLSTM)+条件随机场(Conditional Random Field,CRF)端到端模型进行试验,结果表明效果优于基于普通标注方式的流水线方法和联合学习方法中的卷积神经网络(Convolutional Neural Networks,CNN)+BiLSTM+CRF、BiLSTM+CRF等经典模型,F1得分为91.34%.最后,将抽取到的知识存储到Neo4j图数据库中,直观地反映知识图谱的内部结构,实现知识可视化和知识推理.该研究构建的知识图谱可为作物病虫害智能问答系统、推荐系统、智能搜索等下游应用提供高质量的知识库基础.
推荐文章
知识图谱可视化查询技术综述
知识图谱
查询语言
可视化技术
可视化查询
本体可视化
基于深度学习的威胁情报知识图谱构建技术
威胁情报
实体抽取
深度学习
知识图谱
基于CiteSpace中医健康教育知识图谱可视化分析
中医
健康教育
CiteSpace软件
可视化分析
基于企业知识图谱构建的可视化研究
知识图谱
本体
RDF数据
知识推理
数据可视化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的作物病虫害可视化知识图谱构建
来源期刊 农业工程学报 学科 工学
关键词 作物 病虫害 模型 知识图谱 深度学习 实体关系联合抽取
年,卷(期) 2020,(24) 所属期刊栏目 农业信息与电气技术
研究方向 页码范围 177-185
页数 9页 分类号 TP391
字数 语种 中文
DOI 10.11975/j.issn.1002-6819.2020.24.021
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (83)
共引文献  (158)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(9)
  • 参考文献(1)
  • 二级参考文献(8)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(9)
  • 参考文献(2)
  • 二级参考文献(7)
2017(4)
  • 参考文献(0)
  • 二级参考文献(4)
2018(10)
  • 参考文献(1)
  • 二级参考文献(9)
2019(10)
  • 参考文献(5)
  • 二级参考文献(5)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
作物
病虫害
模型
知识图谱
深度学习
实体关系联合抽取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
农业工程学报
半月刊
1002-6819
11-2047/S
大16开
北京朝阳区麦子店街41号
18-57
1985
chi
出版文献量(篇)
16403
总下载数(次)
36
总被引数(次)
395062
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导