基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
翻译算法自从提出以来受到研究者的广泛关注,基于生成对抗网络的图像翻译方法在图片风格转化、图像修复、超分辨率生成等领域得到广泛应用.针对生成对抗网络图像翻译方法框架过于庞大的缺点,提出了一种改进的生成对抗网络算法:二分生成对抗网络(BGAN).BGAN引入二分生成器结构代替双生成器-判别器结构,神经网络模型相比以往方法资源消耗更少.实验结果表明,BGAN与其他图像翻译算法相比而言,生成的图样样本更清晰、质量更好.
推荐文章
基于生成对抗文本的人脸图像翻译
人脸图像翻译
生成对抗文本
深度对称结构联合编码
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于二分生成对抗网络的图像翻译
来源期刊 信息与电脑 学科 工学
关键词 生成对抗网络 生成模型 图像翻译
年,卷(期) 2020,(1) 所属期刊栏目 算法语言
研究方向 页码范围 52-54,57
页数 4页 分类号 TP391.41
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
生成对抗网络
生成模型
图像翻译
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与电脑
半月刊
1003-9767
11-2697/TP
北京市东城区北河沿大街79号
chi
出版文献量(篇)
16624
总下载数(次)
72
总被引数(次)
19907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导