作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了预测煤炭价格,本文基于非线性协整的BP神经网络,结合多元线性回归技术建立了综合预测模型.通过计算相关系数,选取了7个影响因素并收集它们的历史数据,用SPSS对其进行多元回归分析计算各因素的β系数,通过对比分析确定了5个主要因素.然后将各因素数据代入回归模型,得到每个因素的影响程度值并排序,发现秦皇岛港影响程度最大的因素为经济景气指数,影响程度最小的因素为煤炭进口量.
推荐文章
基于BP神经网络的表面硬度预测模型
BP神经网络
激光相变硬化
扫描参数
预测
基于BP神经网络对NMR的预测模型
1H NMR和13C NMR
神经网络
BP算法
预测模型
基于改进BP神经网络的预测模型及其应用
神经网络
BP算法
L-M算法
非线性系统
预测
优化BP神经网络的位移预测模型
改进粒子群算法
BP神经网络
混凝土重力坝
位移
预测
仿真分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的煤炭价格预测模型
来源期刊 数码世界 学科
关键词 计量经济学回归模型 经济景气指数 煤炭价格
年,卷(期) 2020,(8) 所属期刊栏目 云社区
研究方向 页码范围 192-193
页数 2页 分类号
字数 1528字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 夏劲彪 桂林理工大学信息科学与工程学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (8)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计量经济学回归模型
经济景气指数
煤炭价格
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数码世界
月刊
1671-8313
12-1344/TP
大16开
北京市海淀区永定路4号A院3号楼506室
6-167
2002
chi
出版文献量(篇)
22805
总下载数(次)
112
总被引数(次)
4543
论文1v1指导