作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着人工智能时代的到来,智能算法应具有较强的非线性映射能力、数据处理能力和泛化能力等。文章基于支持向量机(PSO)参数优化的算法实现图像特的智能辨识。首先,理论分析SVM分类过程,明确影响SVM分类性能的重要因素。其次,选择四种不同胃状的图像特征信息作为分类对象,对特征信息进行了预处理操作,消除了量纲及量级对分类效果的影响。最后,经过粒子群优化(PSO)算法实现SVM的参数寻优,建立优化模型,可视化分类结果。结果表明,PSO-SVM的分类准确率高达95%,说明基于PSO-SVM的人工智能技术可以提供一个方法来实现图像特征的智能辨识。
推荐文章
利用支持向量机的摩擦模型参数辨识
摩擦模型
参数辨识
支持向量机
伺服系统
基于GEP的支持向量机参数优化
支持向量机
基因表达式编程
参数优化
基于V-支持向量机与ε-支持向量机的非线性系统辨识
支持向量机
非线性系统
辨识
回归问题
基于支持向量机的非线性系统辨识研究
支持向量机
系统辨识
非线性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机参数优化的图像特征智能辨识
来源期刊 电脑知识与技术:学术版 学科 工学
关键词 人工智能 支持向量机 粒子群优化 参数寻优 图像识别
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 173-175
页数 3页 分类号 TP393
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖磊 海南师范大学信息科学技术学院 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人工智能
支持向量机
粒子群优化
参数寻优
图像识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
电脑知识与技术:学术版2020年第9期 电脑知识与技术:学术版2020年第8期 电脑知识与技术:学术版2020年第7期 电脑知识与技术:学术版2020年第6期 电脑知识与技术:学术版2020年第5期 电脑知识与技术:学术版2020年第4期 电脑知识与技术:学术版2020年第36期 电脑知识与技术:学术版2020年第35期 电脑知识与技术:学术版2020年第34期 电脑知识与技术:学术版2020年第33期 电脑知识与技术:学术版2020年第32期 电脑知识与技术:学术版2020年第31期 电脑知识与技术:学术版2020年第30期 电脑知识与技术:学术版2020年第3期 电脑知识与技术:学术版2020年第29期 电脑知识与技术:学术版2020年第28期 电脑知识与技术:学术版2020年第27期 电脑知识与技术:学术版2020年第26期 电脑知识与技术:学术版2020年第25期 电脑知识与技术:学术版2020年第24期 电脑知识与技术:学术版2020年第23期 电脑知识与技术:学术版2020年第22期 电脑知识与技术:学术版2020年第21期 电脑知识与技术:学术版2020年第20期 电脑知识与技术:学术版2020年第2期 电脑知识与技术:学术版2020年第19期 电脑知识与技术:学术版2020年第18期 电脑知识与技术:学术版2020年第17期 电脑知识与技术:学术版2020年第16期 电脑知识与技术:学术版2020年第15期 电脑知识与技术:学术版2020年第14期 电脑知识与技术:学术版2020年第13期 电脑知识与技术:学术版2020年第12期 电脑知识与技术:学术版2020年第11期 电脑知识与技术:学术版2020年第10期 电脑知识与技术:学术版2020年第1期
论文1v1指导