原文服务方: 化工学报       
摘要:
出水总磷的准确预测对于城市污水处理厂的高效、稳定的运行至关重要。文中针对城市污水处理过程中出水总磷难以预测的问题,提出一种基于改进集合经验模态分解(modified ensemble empirical mode decomposition,MEEMD)和深度信念网络(deep belief network,DBN)的出水总磷预测方法。首先,设计一种MEEMD算法对城市污水处理过程出水总磷数据信号进行分解,获取多个本征模态函数(intrinsic mode function,IMF)组合;然后,建立一种基于模拟退火(simulated annealing,SA)算法的深度信念网络预测模型,通过优化的模型结构对分解后得到的每个IMF分量进行有效预测;最后,通过大气CO2浓度预测和城市污水处理出水总磷预测验证了所提出方法的有效性。
推荐文章
基于PLSR自适应深度信念网络的出水总磷预测
出水总磷
PLSR
自适应学习率
深度学习
深度信念网络
基于改进深度信念网络的心血管疾病预测研究
心血管疾病
风险预测
深度信念网络
受限玻尔兹曼机
基于改进经验模态分解的HHT密集模态识别方法
改进HHT法
经验模态分解
信号调频
解相关
密集模态
基于集合经验模态分解-小波阈值方法的爆破振动信号降噪方法
爆破信号
集合经验模态分解
小波阈值
降噪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进集合经验模态分解和深度信念网络的出水总磷预测
来源期刊 化工学报 学科
关键词 城市污水处理过程 出水总磷 集合经验模态分解 深度信念网络
年,卷(期) 2021,(5) 所属期刊栏目 过程系统工程
研究方向 页码范围 2745-2753
页数 8页 分类号 TP183
字数 语种 中文
DOI 10.11949/0438-1157.20201365
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
城市污水处理过程
出水总磷
集合经验模态分解
深度信念网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
化工学报
月刊
0438-1157
11-1946/TQ
大16开
1923-01-01
chi
出版文献量(篇)
11879
总下载数(次)
0
总被引数(次)
117834
论文1v1指导