基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
小样本学习是指在样本数据不足或质量较低的情况下进行的深度学习训练和预测的方法.针对深度学习目标检测应用中可能会面对的样本数据不足的问题,分析了小样本目标检测的数学模型和误差来源,将适用于小样本目标检测的方法分成数据、模型和算法三个类别进行了归纳总结,简述了各个方案的缺点与不足,并枚举了近年来在小样本目标检测上的可行方法实践探索,简要介绍了其实现的效果.在此基础上,简单介绍了与小样本学习相类似的深度学习应用,并在分析了目前小样本检测中存在的问题后,对未来小样本目标检测的发展方向和研究趋势进行了讨论.
推荐文章
浮空器主缆绳表面的小样本学习缺陷检测研究
缺陷检测
小样本学习
度量学习
浮空器
小样本深度学习方法实现LED TV屏缺陷检测
机器视觉
迁移学习
增量学习
FCNet
LED TV
缺陷检测
小样本目标检测的研究现状
小样本学习
深度学习
目标检测
基于小样本学习的地面结露结霜现象检测方法
地面气象观测
结露现象检测
结霜现象检测
特征提取
语义描述
图像分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 小样本目标检测综述
来源期刊 导航与控制 学科
关键词 目标检测 小样本学习 数据增强 增量学习 元学习
年,卷(期) 2021,(1) 所属期刊栏目 综述|Summary
研究方向 页码范围 1-14
页数 14页 分类号 TP273+.2
字数 语种 中文
DOI 10.3969/j.issn.1674-5558.2021.01.001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
小样本学习
数据增强
增量学习
元学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
导航与控制
双月刊
1674-5558
11-5804/V
大16开
北京142信箱403分箱
2002
chi
出版文献量(篇)
1092
总下载数(次)
2
总被引数(次)
1531
论文1v1指导