基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
光流信息是图像像素的运动表示,现有光流估计方法在应对图像遮挡、大位移和细节呈现等复杂情况时难以保证高精度.为了克服这些难点问题,本文建立一种新型的卷积神经网络模型,通过改进卷积形式和特征融合的方式来提高估计精度.首先,加入调整优化能力更强的可形变卷积,以便于提取相邻帧图像的大位移和细节等空间特征;然后利用基于注意力机制生成特征关联层,将相邻两帧的特征进行融合,以其作为由反卷积和上采样构成的解码部分的输入,旨在克服基于特征匹配等估计光流传统方法精度低的缺点;最后将得到的估计光流通过多网络堆栈的循环优化模型实现最终的光流估计.实验表明,本文网络模型在处理遮挡、大位移和细节呈现等方面的表现优于现有方法.
推荐文章
基于卷积神经网络的实时环境光遮蔽计算
环境光遮蔽
蒙特卡罗采样去噪
卷积神经网络
屏幕空间
自动编码器
基于伪三维卷积神经网络的手势姿态估计
手势姿态估计
伪三维卷积神经网络
三维特征
深度图像
深度学习
基于卷积神经网络的未知协议识别方法
深度学习
机器学习
卷积神经网络
未知协议识别
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的光流估计模型
来源期刊 数据采集与处理 学科 工学
关键词 光流估计 可形变卷积 卷积神经网络 注意力机制
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 63-75
页数 13页 分类号 TP391
字数 语种 中文
DOI 10.16337/j.1004-9037.2021.01.006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (7)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1951(1)
  • 参考文献(1)
  • 二级参考文献(0)
1981(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
光流估计
可形变卷积
卷积神经网络
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
论文1v1指导