基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
城市轨道交通客流预测是客运组织的基础,预测结果可为运营管理提供决策依据.针对城市轨道交通客流量预测问题,提出了一种ARMA-RBF组合客流预测算法:首先根据变点算法,通过对客流数据构成的时间序列处理得到变点集;然后基于小波变化对变点集进行去噪处理;最后利用ARMA-RBF算法对城市轨道客流进行预测.以北京地铁4号线新街口、平安里、西四地铁站进出客流数据进行方法验证,结果表明,相较于单独的ARMA算法或RBF神经网络算法,ARMA-RBF组合客流预测算法可提高城市轨道交通进站客流预测的精度.
推荐文章
基于组合模型的城市轨道交通客流预测研究
客流预测
组合模型
神经网络
工程造价
城市轨道交通突发大客流事件应急策略
轨道交通系统
大客流特征
应急策略
组织措施
基于ARMA模型的城市轨道交通客流量预测
客流量
预测模型
时间序列
相对误差
城市轨道交通突发大客流事件应急响应初探
城市轨道交通
突发大客流
应急响应
常规流程图
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 城市轨道交通客流预测算法研究
来源期刊 交通工程 学科
关键词 轨道交通 变点算法 小波去噪 ARMA-RBF组合预测算法
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 40-47
页数 8页 分类号 U293
字数 语种 英文
DOI 10.13986/j.cnki.jote.2021.01.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (83)
共引文献  (101)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(12)
  • 参考文献(0)
  • 二级参考文献(12)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(11)
  • 参考文献(0)
  • 二级参考文献(11)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(10)
  • 参考文献(3)
  • 二级参考文献(7)
2019(4)
  • 参考文献(2)
  • 二级参考文献(2)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
轨道交通
变点算法
小波去噪
ARMA-RBF组合预测算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通工程
双月刊
2096-3432
10-1468/U
大16开
北京市丰台区南四环西路186号汉威国际四区3号楼6M层
2000
eng
出版文献量(篇)
1342
总下载数(次)
5
论文1v1指导