基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统人工提取方法自动化程度低、过分依赖人工设计的特征,以及现有的深度学习方法中存在的提取精度不高等问题,提出了一种基于改进型U-Net网络的高分辨率遥感影像建筑物提取方法.首先将空洞卷积加入到网络中,利用不同尺度的空洞卷积对来自网络编码部分的结果进行多尺度特征提取;再对提取的特征进行特征融合,并输入到网络的下一层;然后将制作的数据集输入到网络中进行训练;最后利用Softmax得到最终分割结果.在建筑物公开的数据集中进行测试,提取结果的像素精度为96.26%;Iou精度为78.59%、Recall为95.65%,表明该方法具有良好的鲁棒性和精度,能从影像中准确地提取建筑物.
推荐文章
基于深度学习的高分辨率 遥感影像建筑物提取
遥感影像;
建筑物提取;
多尺度;
深度学习
基于基元的高分辨率遥感建筑物提取研究
高分辨率遥感
建筑物提取
特征提取
识别
多尺度显著性引导的高分辨率遥感影像建筑物提取
遥感影像
建筑物提取
显著性检测
多尺度
随机森林
基于不变矩的高分辨率遥感图像的建筑物提取方法
高分辨率遥感图像
边缘检测
不变矩
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进型U-Net网络的高分辨率遥感影像建筑物提取
来源期刊 地理空间信息 学科 地球科学
关键词 建筑物提取 卷积神经网络 空洞卷积 高分辨率遥感影像
年,卷(期) 2021,(1) 所属期刊栏目 技术热点研究
研究方向 页码范围 30-34
页数 5页 分类号 P237
字数 语种 中文
DOI 10.3969/j.issn.1672-4623.2021.01.007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (12)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
建筑物提取
卷积神经网络
空洞卷积
高分辨率遥感影像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地理空间信息
月刊
1672-4623
42-1692/P
大16开
湖北省武汉市武昌中南一路50号湖北省测绘局地理信息局航测楼二楼
2003
chi
出版文献量(篇)
5778
总下载数(次)
16
总被引数(次)
25892
论文1v1指导