基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
智能故障诊断技术能有效保障机械设备安全运行,传统的轴承故障诊断通常假设标记的源域和未标记的目标域数据服从同一分布.然而,在实际的诊断场景中,轴承数据的条件分布和边缘分布往往不满足同分布假设.此外,在原始欧氏空间执行自适应分布对齐时,特征扭曲难以消除,从而影响故障诊断性能.通过提出一种具有流形特征学习和动态分布对齐的自适应轴承故障诊断模型,来解决上述问题.首先,在格拉斯曼流形中构造测地线流式核,提取与轴承故障信息相关的固有流形特征表示,以避免数据特征扭曲;其次,通过A-distance定义一个跨域自适应因子来动态评估流形特征的条件分布和边缘分布;最后,基于结构风险最小化原则迭代求解一个跨域分类器,进而预测目标域样本标签.通过多个指标的实验分析,表明该模型能够有效避免特征扭曲,并利用动态权值调整跨域数据条件分布和边缘分布的相对重要性,验证了所提方法的有效性.
推荐文章
基于自适应遗传随机共振的滚动轴承微弱故障诊断
微弱故障
滚动轴承
随机共振
遗传算法
SAE网络
实验验证
自适应遗传算法在滚动轴承故障诊断中的应用
自适应遗传算法
高阶模糊BP神经网络
小波分析
故障诊断自适应策略研究
故障诊断
自适应
数据挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自适应流形嵌入动态分布对齐的轴承故障诊断
来源期刊 电子测量与仪器学报 学科
关键词 故障诊断 迁移学习 自适应分布对齐 流形学习
年,卷(期) 2021,(2) 所属期刊栏目 “状态监测与故障诊断”专题|CONDITION MONITORING AND FAULT DIAGNOSIS
研究方向 页码范围 33-40
页数 8页 分类号 TH165+.3|TN06
字数 语种 中文
DOI 10.13382/j.jemi.B2003661
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (21)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(6)
  • 参考文献(6)
  • 二级参考文献(0)
2020(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障诊断
迁移学习
自适应分布对齐
流形学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
总被引数(次)
44770
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导