基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为研究滚动轴承早期微弱故障特征提取以及最大相关峭度解卷积(MCKD)的参数对诊断效果的影响,提出了一种基于固有时间尺度分解(ITD)与改进最大相关峭度解卷积(IMCKD)相结合的轴承早期微弱故障诊断方法(ITD-IMCKD).首先,运用ITD算法对故障信号进行分解,按峭度相关系数准则重构信号;其次,利用灰狼优化(GWO)算法以解卷积后信号的排列熵为适应函数对MCKD算法的关键参数进行自适应优选;最后,采用GWO改进的MCKD对重构信号进行滤波去噪,通过Hilbert包络谱可以清晰获得轴承故障频率信息.仿真与实验结果表明,所提出的ITD-IMCKD方法避免了经验选择MCKD参数影响诊断效果的问题,并且相比于ITD-MCKD、ITD-MED方法可有效提取轴承早期微弱故障特征.
推荐文章
基于ELMD-MCKD在滚动轴承故障诊断中的应用
ELMD
MCKD
乘积函数
故障诊断
基于EEMD 和改进VPMCD 的滚动轴承故障诊断方法
改进VPMCD
EEMD方法
奇异值分解
滚动轴承
故障诊断
基于改进HHT能量熵和SVM的滚动轴承故障诊断
希尔伯特-黄变换
能量熵
支持向量机
滚动轴承
故障诊断
基于多尺度熵的滚动轴承故障诊断方法
样本熵
多尺度熵
滚动轴承
故障诊断
复杂性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ITD与改进MCKD的滚动轴承故障诊断方法
来源期刊 广西大学学报(自然科学版) 学科
关键词 滚动轴承 固有时间尺度分解 最大相关峭度解卷积 灰狼优化算法 故障诊断
年,卷(期) 2021,(1) 所属期刊栏目 机械工程
研究方向 页码范围 107-115
页数 9页 分类号 TH133.3|TH17
字数 语种 中文
DOI 10.13624/j.cnki.issn.1001-7445.2021.0107
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (126)
共引文献  (41)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(5)
  • 参考文献(2)
  • 二级参考文献(3)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(11)
  • 参考文献(1)
  • 二级参考文献(10)
2012(16)
  • 参考文献(1)
  • 二级参考文献(15)
2013(11)
  • 参考文献(1)
  • 二级参考文献(10)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(16)
  • 参考文献(1)
  • 二级参考文献(15)
2016(11)
  • 参考文献(1)
  • 二级参考文献(10)
2017(9)
  • 参考文献(0)
  • 二级参考文献(9)
2018(7)
  • 参考文献(2)
  • 二级参考文献(5)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
固有时间尺度分解
最大相关峭度解卷积
灰狼优化算法
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西大学学报(自然科学版)
双月刊
1001-7445
45-1071/N
大16开
广西南宁市大学路100号广西大学西校园学报编辑部
28832转3
1976
chi
出版文献量(篇)
4586
总下载数(次)
8
总被引数(次)
23980
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导