基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,基于RNN的模型架构在命名实体识别任务中被广泛采用,但其循环特性导致GPU的并行计算能力无法被充分利用.普通一维卷积虽可以并行处理输入文本,显著缩短模型训练时长,但处理长文本时往往需要堆叠多个卷积层,进而增加梯度消失的风险.针对以上问题,该文采用可通过参数调节感受野范围的空洞卷积,并引入了带有残差连接的门控机制,以强化有效信息,降低无效信息的影响,同时改善梯度消失问题;针对字向量表示能力有限的问题,该文还将字向量与其所属词的位置信息融合,以丰富文本特征.为验证所提出方法的有效性,在MSRA数据集以及Sina Resume数据集上进行了实验,F1值分别达到了92.97% 与94.98%.与传统基于Bi-LSTM-CRF的命名实体识别模型相比,模型训练速度提升5~6倍,且表现优于一般的RNN架构.
推荐文章
基于位置敏感Embedding的中文命名实体识别
命名实体识别
表示学习
Embedding
多尺度聚类
条件随机场
一种基于命名实体识别的需求跟踪方法
需求跟踪
命名实体识别
语义聚类
自然语言处理
权重计算
基于中文维基百科的命名实体消歧方法
命名实体消歧
词义消歧
中文维基百科
中文信息处理
基于BLSTM-CRF中文领域命名实体识别框架设计
BLSTM-CRF
CBOW
Boson
命名实体识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于门控空洞卷积的高效中文命名实体识别方法
来源期刊 中文信息学报 学科 工学
关键词 空洞卷积 门控机制 中文命名实体识别
年,卷(期) 2021,(1) 所属期刊栏目 信息抽取与文本挖掘
研究方向 页码范围 72-80
页数 9页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
空洞卷积
门控机制
中文命名实体识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
论文1v1指导