基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对前大数据环境下浅层机器学习模型提取特征能力不足、分类能力有限等问题,提出了一种深度置信提升网络集成分类模型.该模型采用集成深度置信网络(deep belief net-works,DBN)进行特征提取,克服了单一模型特征提取能力不足的问题;采用极端梯度提升决策树(eXtreme gradient boosting,XGBoost)和梯度提升决策树(gradient boost decision tree,GBDT)构建深层提升网络,对提取特征进行多层特征深度学习,采用相对多数投票法输出分类结果.基于4个UCI公开数据集和MNIST数据集对提出模型进行了检测实验,实验结果表明:提出模型较深度置信网络、极限梯度提升树和DBN-XGBDT等3种模型的准确率分别提升了13.8%、6.98%和4.18%.
推荐文章
利用深度置信网络的中文短信分类
深度置信网络
深度学习
受限波尔兹曼机
短信
基于稀疏深度置信网络的图像分类识别研究
焊缝缺陷
深度学习
稀疏约束
深度置信网络
一种改进的深度置信网络在交通流预测中的应用
交通流预测
深度置信网络
连续受限玻尔兹曼机
自适应学习步长
一种基于微阵列数据的集成分类方法
微阵列数据
主成分分析
特征选择
支持向量机
集成分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种深度置信提升网络集成分类模型
来源期刊 重庆理工大学学报(自然科学版) 学科 工学
关键词 深度置信网络 级联结构 集成学习 分类
年,卷(期) 2021,(1) 所属期刊栏目 信息·计算机
研究方向 页码范围 168-179
页数 12页 分类号 TP181
字数 语种 中文
DOI 10.3969/j.issn.1674-8425(z).2021.01.022
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (3)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(8)
  • 参考文献(2)
  • 二级参考文献(6)
2018(11)
  • 参考文献(1)
  • 二级参考文献(10)
2019(5)
  • 参考文献(3)
  • 二级参考文献(2)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度置信网络
级联结构
集成学习
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆理工大学学报(自然科学版)
月刊
1674-8425
50-1205/T
重庆市九龙坡区杨家坪
chi
出版文献量(篇)
7998
总下载数(次)
17
总被引数(次)
41083
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导