基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决传统串行朴素贝叶斯算法分类性能低下的问题,提出一种基于朴素贝叶斯算法的并行化分类方法.选取多项式朴素贝叶斯,搭建Hadoop集群,通过卡方检验选取特征词,利用词频-逆文本频率指数方法计算出每个特征项的权值,并求出每类的权重总和,将权值应用到朴素贝叶斯公式中得到分类结果.实验结果表明:在该集群上设计的并行化朴素贝叶斯分类方法较比传统朴素贝叶斯方法,其精确率,召回率,F1值分别至少提高了7.66%,7.56%,11.98%,且用时更短,说明本文的方法能够提高处理文本的时间效率.
推荐文章
基于 MapReduce 的平均多项朴素贝叶斯文本分类
文本分类
朴素贝叶斯
并行计算
冗余特征
大数据
基于Hadoop的Dirichlet朴素贝叶斯文本分类算法
文本分类
云计算
MapReduce
朴素贝叶斯文本
数据平滑
基于改进的朴素贝叶斯文本分类研究
文本分类
朴素贝叶斯
K近邻
知网
中文分词
朴素贝叶斯算法和SVM算法在Web文本分类中的效率分析
Web分类系统
朴素贝叶斯算法
SVM算法
效率分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MapReduce的朴素贝叶斯算法文本分类方法
来源期刊 武汉工程大学学报 学科 工学
关键词 朴素贝叶斯 分类 并行化 MapReduce
年,卷(期) 2021,(1) 所属期刊栏目 机电与信息工程
研究方向 页码范围 102-105
页数 4页 分类号 TP311
字数 语种 中文
DOI 10.19843/j.cnki.CN42-1779/TQ.202009022
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (158)
共引文献  (59)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(17)
  • 参考文献(0)
  • 二级参考文献(17)
2014(19)
  • 参考文献(0)
  • 二级参考文献(19)
2015(20)
  • 参考文献(0)
  • 二级参考文献(20)
2016(29)
  • 参考文献(0)
  • 二级参考文献(29)
2017(22)
  • 参考文献(2)
  • 二级参考文献(20)
2018(20)
  • 参考文献(3)
  • 二级参考文献(17)
2019(11)
  • 参考文献(8)
  • 二级参考文献(3)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
朴素贝叶斯
分类
并行化
MapReduce
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
武汉工程大学学报
双月刊
1674-2869
42-1779/TQ
大16开
武汉市江夏区流芳大道特1号,武汉工程大学流芳校区,西北区1号楼504学报编辑部收
1979
chi
出版文献量(篇)
3719
总下载数(次)
13
论文1v1指导