基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
中文命名实体识别方法中采用较多的是神经网络模型,但该模型在训练过程中存在字向量表征过于单一的问题,无法很好地处理字的多义性特征.因此,提出一种基于Bert-BLSTM-CRF模型的中文命名实体识别研究方法,使用Bert预训练语言模型,根据字的上下文信息来丰富字的语义向量,将输出的字向量序列作为输入送入BLSTM-CRF模型进行训练.实验结果表明,此方法在中文命名实体识别任务上其准确率、召回率和F1值分别取得了94.80%、95.44%和95.12%的成绩,相较于其他传统方法,效果显著.
推荐文章
基于BLSTM-CRF中文领域命名实体识别框架设计
BLSTM-CRF
CBOW
Boson
命名实体识别
基于E-CNN和BLSTM-CRF的临床文本命名实体识别
命名实体识别
临床文本
集成的卷积神经网络
基于位置敏感Embedding的中文命名实体识别
命名实体识别
表示学习
Embedding
多尺度聚类
条件随机场
基于BLSTM-CRF中文领域命名实体识别框架设计
BLSTM-CRF
CBOW
Boson
命名实体识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Bert-BLSTM-CRF模型的中文命名实体识别
来源期刊 安庆师范大学学报(自然科学版) 学科 工学
关键词 中文实体识别 双向LSTM 条件随机场
年,卷(期) 2021,(1) 所属期刊栏目 计算机与信息技术
研究方向 页码范围 59-65
页数 7页 分类号 TP391.1
字数 语种 中文
DOI 10.13757/j.cnki.cn34-1328/n.2021.01.013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (42)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(10)
  • 参考文献(1)
  • 二级参考文献(9)
2018(7)
  • 参考文献(2)
  • 二级参考文献(5)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
中文实体识别
双向LSTM
条件随机场
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安庆师范大学学报(自然科学版)
季刊
1007-4260
34-1328/N
大16开
安徽省安庆市
26-142
1982
chi
出版文献量(篇)
3170
总下载数(次)
9
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导