基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的:开发一种可以检测不同类型颅内出血并自动计算血肿体积的基于卷积神经网络的深度学习算法,探讨其识别的准确性及血肿分割的一致性.方法:数据集1纳入9594例颅脑CT平扫图像,随机选取223例颅内出血阳性患者作为颅内出血类型识别的测试集,剩余CT图像作为其训练集,评估测试集中算法识别五种不同类型颅内出血的效能.数据集2选取另外819例已人工勾画出血灶的CT图像,随机选取74例作为测试集,以人工手动分割为金标准,验证测试集中算法分割与人工分割的一致性.结果:在223例颅内出血阳性患者中,深度学习算法对五种类型颅内出血识别的曲线下面积均大于或接近0.85,特异度均大于0.95;在74例血肿分割测试数据中,算法自动测量的血肿体积与人工手动分割测量的血肿体积之间达到较高的一致性,脑实质内出血、硬膜外出血、脑室内出血及硬膜下出血体积测量的组内相关系数分别为1、0.990、0.996和0.878.结论:基于卷积神经网络的深度学习算法可以较好地识别不同类型的颅内出血,并能精确测量血肿体积,具有一定的临床应用前景.
推荐文章
基于深度卷积神经网络的车型识别研究
深度学习
卷积神经网络
支持向量机
高速公路
车型识别
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
深度学习与一致性表示空间学习的跨媒体检索
跨模态
跨媒体
深度学习
卷积神经网络
一致性表示空间
中心相关性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的深度学习算法对颅内出血的类型识别及血肿分割一致性的研究
来源期刊 放射学实践 学科 医学
关键词 卷积神经网络 深度学习 颅内出血 血肿分割 体层摄影术,X线计算机
年,卷(期) 2021,(1) 所属期刊栏目 本刊特稿
研究方向 页码范围 7-12
页数 6页 分类号 R743.9|R814.42|TP18
字数 语种 中文
DOI 10.13609/j.cnki.1000-0313.2021.01.002
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (51)
参考文献  (21)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(8)
  • 参考文献(1)
  • 二级参考文献(7)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(9)
  • 参考文献(2)
  • 二级参考文献(7)
2019(10)
  • 参考文献(3)
  • 二级参考文献(7)
2020(8)
  • 参考文献(3)
  • 二级参考文献(5)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
深度学习
颅内出血
血肿分割
体层摄影术,X线计算机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
放射学实践
月刊
1000-0313
42-1208/R
16开
武汉解放大道1095号同济医院内
38-122
1986
chi
出版文献量(篇)
8928
总下载数(次)
5
总被引数(次)
44785
论文1v1指导