基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对名优茶嫩芽自动采摘问题,采用SVM学习算法实现对名优茶嫩芽图像自动分割.通过提取嫩芽像素点与背景像素点的RGB及(R-B)特征,将4个特征按重要性组合为3个特征组,分别是RGB特征组、RGB+(R-B)特征组和G+(R-B)特征组,利用3个特征组分别构建SVM嫩芽分割模型.在收集的多幅图像上的实验表明G+(R-B)特征组构建的分割模型分割得到的嫩芽图像较为完整,且用时均低于0.5 s,满足名优茶嫩芽自动采摘的要求.
推荐文章
中国名优茶消费需求调查分析
茶叶
名优茶
消费需求
消费行为
差异
旌德县名优茶品牌建设现状、存在的问题和对策
名优茶品牌建设
问题和对策
旌德县
名优茶鲜叶智能养护机的设计
名优茶鲜叶
智能养护机
单片机
时间
温度
SVM图像分割方法的研究
支持向量机
全局门限处理
SVM图像
图像分割
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SVM的名优茶嫩芽图像自动分割方法
来源期刊 现代信息科技 学科
关键词 自动采摘 SVM 图像分割
年,卷(期) 2021,(2) 所属期刊栏目 计算机技术|Computer Technology
研究方向 页码范围 89-92
页数 4页 分类号 TP391
字数 语种 中文
DOI 10.19850/j.cnki.2096-4706.2021.02.022
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (74)
共引文献  (78)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(8)
  • 参考文献(2)
  • 二级参考文献(6)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自动采摘
SVM
图像分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代信息科技
半月刊
2096-4706
44-1736/TN
16开
广东省广州市白云区机场路1718号8A09
46-250
2017
chi
出版文献量(篇)
4784
总下载数(次)
45
总被引数(次)
3182
论文1v1指导