基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的高分辨距离像识别方法没有考虑时序相关性,且高分辨距离像的方位敏感性导致样本的时序性发生变化.因此,提出一种乘性循环神经网络模型.该算法首先将高分辨距离像样本转化为序列形式,用于考虑距离单元间的相关性;其次,为了缓解方位敏感性导致的高分辨距离像时序变化与参数固定模型不匹配的问题,模型根据输入数据自适应地选择对应的参数,并对高分辨距离像序列提取稳健的时序信息;最后,采用投票策略将所有时刻的信息进行融合,输出样本类别.采用实测数据的实验结果表明,当前的模型能够有效地提取可分性特征并识别目标.
推荐文章
基于插值HRRP和SVM的雷达目标识别方法
雷达目标识别
支持向量机
插值
高分辨一维距离像
基于混淆矩阵的全方位角雷达目标识别
HRRP
雷达目标识别
混淆矩阵
SVM
基于平移不变核主分量分析的雷达目标识别研究
核主分量分析
零相位表示法
特征提取
高分辨率距离像
BP神经网络
采用遗传规划实现合成孔径雷达图像目标识别
合成孔径雷达
目标识别
遗传规划
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 采用乘性RNN的雷达HRRP目标识别
来源期刊 西安电子科技大学学报(自然科学版) 学科
关键词 雷达自动目标识别 乘性循环神经网络 高分辨距离像 方位敏感性 时序相关性
年,卷(期) 2021,(2) 所属期刊栏目 雷达技术进展专题|Special Issue:Advances in Radar Technology
研究方向 页码范围 49-54
页数 6页 分类号 TN957.52
字数 语种 中文
DOI 10.19665/j.issn1001-2400.2021.02.007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (12)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
雷达自动目标识别
乘性循环神经网络
高分辨距离像
方位敏感性
时序相关性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安电子科技大学学报(自然科学版)
双月刊
1001-2400
61-1076/TN
西安市太白南路2号349信箱
chi
出版文献量(篇)
4652
总下载数(次)
5
总被引数(次)
38780
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导