作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对不断更新的对抗攻击,提出一个基于生成对抗网络的防御系统.系统利用生成对抗网络不断生成新的对抗样本,反复训练模型以增强其鲁棒性.具体过程为将预先训练的卷积神经网络和外部GAN(conditional GAN:Pix2Pix)相结合,自动流水线式地推断对抗样本和干净样本之间的转换关系,并合成新的对抗样本.根据分辨得到的反馈结果不断调节生成对抗网络中的生成器和判别器,以增强其性能,而新合成的对抗样本被用来加强迭代管道中的防御模型.最后通过实验证明了该系统的有效性.
推荐文章
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
基于生成对抗网络的航班起飞风险预测
航班起飞风险预测
数据增强
生成对抗网络
神经网络
生成对抗网络研究综述
GAN
神经对抗网络
二人博弈
人工智能
深度学习
生成式模型
基于生成对抗网络的遮挡表情识别
人脸表情识别
局部遮挡
人脸修复
生成对抗网络
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于生成对抗网络的对抗防御系统
来源期刊 信息工程大学学报 学科
关键词 对抗攻击 生成对抗网络 卷积神经网络 Pix2Pix
年,卷(期) 2021,(2) 所属期刊栏目 计算机科学与技术
研究方向 页码范围 185-190
页数 6页 分类号 TP391.4
字数 语种 中文
DOI 10.3969/j.issn.1671-0673.2021.02.010
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
对抗攻击
生成对抗网络
卷积神经网络
Pix2Pix
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息工程大学学报
双月刊
1671-0673
41-1196/N
大16开
郑州市科学大道62号
2000
chi
出版文献量(篇)
2792
总下载数(次)
2
总被引数(次)
9088
论文1v1指导