基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统的遥感图像融合方法通常会引起光谱失真的问题和大多数基于深度学习的融合方法忽略充分利用每个卷积层信息的不足,本文结合密集连接卷积网络和残差网络的特性,提出了一个新的融合网络.该网络通过建立多个密集卷积块来充分利用卷积层的分级特征,同时块与块之间通过过渡层加快信息流动,从而最大程度地对特征进行极致利用并提取到丰富的特征.该网络应用残差学习拟合深层特征与浅层特征之间的残差,加快网络的收敛速度.实验中利用GaoFen-1(GF-1)和WorldView-2/3(WV-2/3)的多光谱图像MS(Muhispectral Image)和全色图像PAN (Panchromatic Image)(MS与PAN的空间分辨率之比为4)评估本文提出方法的有效性.从视觉效果和定量评估结果两个方面来看,本文方法得到的融合结果要优于所对比的传统方法和深度学习方法,并且该网络具有鲁棒性,能够泛化到不需要预训练的其他卫星图像.本文方法通过特征的重复利用实现了光谱信息的高保真并提高了空间细节分辨能力,有利于遥感图像的应用研究.
推荐文章
基于分组残差结构的轻量级卷积神经网络设计
卷积神经网络
分组
残差
分类性能
轻量
基于卷积神经网络的遥感图像去噪算法
图像去噪
卷积神经网络
遥感图像
深度学习
基于并行残差卷积神经网络的多种树叶分类
树叶分类
卷积神经网络
残差学习
图像特征提取
批量归一化
测试效果对比
基于密集连接空洞卷积神经网络的青藏地区云雪图像分类
云雪图像识别
特征提取
跨层连接
空洞卷积
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 密集卷积残差网络的遥感图像融合
来源期刊 遥感学报 学科
关键词 遥感图像融合 深度学习 密集连接卷积网络 密集卷积块 残差学习
年,卷(期) 2021,(6) 所属期刊栏目 技术方法|Technologies and Methodologies
研究方向 页码范围 1270-1283
页数 14页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (10)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(6)
  • 参考文献(2)
  • 二级参考文献(4)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(7)
  • 参考文献(3)
  • 二级参考文献(4)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遥感图像融合
深度学习
密集连接卷积网络
密集卷积块
残差学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
遥感学报
月刊
1007-4619
11-3841/TP
大16开
北京市安外大屯路中国科学院遥感与数字地球研究所
82-324
1986
chi
出版文献量(篇)
2330
总下载数(次)
13
总被引数(次)
68505
论文1v1指导