基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统上神经机器翻译依赖于大规模双语平行语料,而无监督神经机器翻译的方法避免了神经机器翻译对大量双语平行语料的过度依赖,更适合低资源语言或领域.无监督神经机器翻译训练时会产生伪平行数据,这些伪平行数据质量对机器翻译最终质量起到了决定性的作用.因此,该文提出利用质量估计的无监督神经机器翻译模型,通过在反向翻译的过程中使用质量估计对生成的伪平行数据评分,再选择评分(HTER)较高的平行数据训练神经网络.利用质量估计的方法可以控制反向翻译生成的伪平行数据的质量,为对抗生成网络提供了更丰富的训练样本,使对抗生成网络训练得更加充分.与基线模型相比,该模型在WMT 2019德语—英语和捷克语—英语新闻单语语料上BLEU值分别提升了0.79和0.55.
推荐文章
改进的模板驱动的神经机器翻译
神经机器翻译
子块模板
短语提取
浅析机器翻译
机器翻译
数据库
优势
准确度
多语言的无监督神经机器翻译
无监督
神经机器翻译
多语言
多任务
基于语义网络的英语机器翻译模型设计与改进
语义网络
机器翻译
模型设计
语义相似度
语料库
权重训练
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 利用质量估计改进无监督神经机器翻译
来源期刊 中文信息学报 学科
关键词 无监督神经机器翻译 反向翻译 质量估计
年,卷(期) 2021,(3) 所属期刊栏目 机器翻译|Machine Translation
研究方向 页码范围 51-59
页数 9页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无监督神经机器翻译
反向翻译
质量估计
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导