Let R be a commutative ring with identity and I0 an ideal of R.We introduce and study the c-weak global dimension c-w.gl.dim(R/I0) of the factor ring R/I0.Let T be a w-linked extension of R,and we also introduce the wR-weak global dimension wR-w.gl.dim(T) of T.We show that the ring T with wR-w.gl.dim(T) =0 is exactly a field and the ring T with wR-w.gl.dim(T) ≤ 1 is exactly a PwRMD.As an application,we give an upper bound for the w-weak global dimension of a Cartesian square (RDTF,M).More precisely,if T is w-linked over R,then w-w.gl.dim(R) ≤ max{wR-w.gl.dim(T) + w-fdR T,c-w.gl.dim(D) + w-fdn D}.Furthermore,for a Milnor square (RDTF,M),we obtain w-w.gl.dim(R) ≤ max{wR-w.gl.dim(T) + w-fdR T,w-w.gl.dim(D) + w-fdR D}.