基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
YOLOv3目标检测模型对于巡飞弹作战中的军事集群目标存在可能漏检紧邻目标的问题.改进算法以YOLOv3为基础,对其候选框选择算法采用的非极大值抑制(NMS)引入惩罚函数,实现soft-NMS,从而减少紧邻目标识别边框被误删的概率.同时针对军事目标数据稀缺的情况,对数据的预处理采用k-fold交叉验证策略,抑制过拟合现象,充分训练模型.实验结果表明,改进算法后对集群目标的检测效果要好于原YOLOv3,其准确率提高了3.14%,召回率提高了17.58%,符合巡飞弹作战中对目标检测精度指标的要求.
推荐文章
自适应边缘优化的改进YOLOV3目标识别算法
目标检测
零件识别
卷积神经网络
YOLOV3
PSO
一种基于改进YOLOv3的密集人群检测算法
密集人群
YOLOv3
特征提取网络
K-means++
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
一种基于改进Yolov3的弹载图像多目标检测方法
弹载图像
目标检测
YOLOv3
位置损失
快速NMS
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 针对军事集群目标的YOLOv3改进算法研究
来源期刊 火力与指挥控制 学科
关键词 巡飞弹 军事集群目标 YOLOv3 soft-NMS 数据预处理
年,卷(期) 2021,(5) 所属期刊栏目 理论研究|THEORY RESEARCH
研究方向 页码范围 81-85
页数 5页 分类号 TJ013|E91
字数 语种 中文
DOI 10.3969/j.issn.1002-0640.2021.05.015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (62)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(8)
  • 参考文献(1)
  • 二级参考文献(7)
2019(4)
  • 参考文献(1)
  • 二级参考文献(3)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
巡飞弹
军事集群目标
YOLOv3
soft-NMS
数据预处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
火力与指挥控制
月刊
1002-0640
14-1138/TJ
大16开
山西太原193号信箱
22-134
1976
chi
出版文献量(篇)
9188
总下载数(次)
26
论文1v1指导