基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有的网络模型在复杂场景中暴露出针对中小目标检测能力不足的问题,本文针对该问题对目标检测领域较流行的SSD网络模型进行了改进.有以下两方面:(1)针对浅层卷积层的语义信息丰富度不足和浅层信息丢失问题,采用残差网络方法对Conv4卷积单元进行改进,并将Conv4_3和Conv5_3的特征图进行了特征融合,设计了新的SSD网络模型.(2)针对Conv7层的特征图细节信息丢问题,将其与Conv3_3特征图融合,并对SSD模型的输出采用区域映射放大机制.文章分别对两次改进的模型进行实验验证.
推荐文章
期刊_基于深度学习的目标检测技术的研究综述
计算机视觉
深度学习 目标检测
基于深度学习方法的复杂场景下车辆目标检测
深度学习
Faster R-CNN
ImageNet数据集
车辆目标检测
基于锚框的深度学习物体目标检测算法概览
深度学习
卷积神经网络
一阶段检测
二阶段检测
数据集
分类预测
位置回归
锚框
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习面向中小目标的检测研究
来源期刊 信息通信 学科 工学
关键词 SSD模型 目标检测 残差网络 特征融合 区域映射
年,卷(期) 2021,(1) 所属期刊栏目 学术研究
研究方向 页码范围 65-67
页数 3页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (635)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(2)
  • 参考文献(0)
  • 二级参考文献(2)
1962(2)
  • 参考文献(0)
  • 二级参考文献(2)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(12)
  • 参考文献(1)
  • 二级参考文献(11)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SSD模型
目标检测
残差网络
特征融合
区域映射
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息通信
月刊
1673-1131
42-1739/TN
大16开
湖北省武汉市
1987
chi
出版文献量(篇)
18968
总下载数(次)
92
论文1v1指导