基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目标检测是计算机视觉领域的核心任务之一.随着深度学习的迅猛发展,基于深度学习的目标检测技术已经成为该领域的主流算法,被广泛应用于人脸检测、车辆检测、行人检测以及无人驾驶等领域.本文系统总结了当前基于深度学习的目标检测算法的研究进展,对各算法的优、缺点及其在VOC2007和COCO数据集上的检测结果进行了全面分析,并对基于深度学习的目标检测算法的未来发展进行了展望.
推荐文章
基于锚框的深度学习物体目标检测算法概览
深度学习
卷积神经网络
一阶段检测
二阶段检测
数据集
分类预测
位置回归
锚框
基于深度学习的目标检测算法研究综述
目标检测
深度学习
计算机视觉
基于深度学习的单阶段目标检测算法研究综述
深度学习
单阶段目标检测算法
特征提取
特征融合
anchor
损失函数
人工智能
基于深度学习的目标检测算法研究
无人驾驶
YOLO
计算机视觉
R-CNN
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的目标检测算法研究进展
来源期刊 陕西师范大学学报(自然科学版) 学科 数学
关键词 深度学习 目标检测 卷积神经网络 计算机视觉 人工智能
年,卷(期) 2019,(5) 所属期刊栏目 人工智能专题
研究方向 页码范围 1-9
页数 9页 分类号 O142
字数 4889字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢娟英 陕西师范大学计算机科学学院 46 873 15.0 28.0
2 刘然 陕西师范大学计算机科学学院 2 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (4)
参考文献  (8)
节点文献
引证文献  (7)
同被引文献  (17)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(6)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(4)
  • 引证文献(4)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
目标检测
卷积神经网络
计算机视觉
人工智能
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
陕西师范大学学报(自然科学版)
双月刊
1672-4291
61-1071/N
大16开
陕西省西安市长安南路
52-109
1960
chi
出版文献量(篇)
3025
总下载数(次)
7
总被引数(次)
18459
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导