钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
小型微型计算机系统期刊
\
Bert在微博短文本情感分类中的应用与优化
Bert在微博短文本情感分类中的应用与优化
作者:
宋明
刘彦隆
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
微博
情感分类
Bert
困难样本
Focal Loss
Bert-FL
摘要:
微博短文本是一种典型的用户生成数据(user generate data),蕴含了丰富的用户情感信息,微博短文本情感分类在舆情分析等众多应用中具有较强的实用价值.微博短文本具有简洁不规范、话题性强等特征,现有研究表明基于有监督的深度学习模型能够显著提升分类效果.本文针对广播电视领域微博文本展开情感分类研究,实验对比了多种文本分类模型,结果表明基于Bert的情感分类方法准确率最高.深入分析实验结果发现,Bert模型对于困难样本的分类错误率较高,为此本文引入Focal Loss作为Bert模型的损失函数,提出一种基于Bert与Focal Loss的微博短文本情感分类方法(简称为Bert-FL方法),使得Bert模型能够更容易学习到困难样本的类别边界信息,实验表明Bert-FL方法的分类准确率绝对提升了0.8%,同时对困难样本的分类准确率也有显著提升.
暂无资源
收藏
引用
分享
推荐文章
结合情感词网的中文短文本情感分类
同义词
情感词网
情感分类
短文本
融合主题的CLSTM短文本情感分类
主题
滑动窗口
上下文
长短期记忆模型
情感分类
基于语义的微博短文本倾向性分析研究
微博
情感倾向
语义相似度
支持向量机
基于ConvLSTM模型的短文本情感分类研究
短文本
情感分类
CNN
LSTM
ConvLSTM模型
深度学习模型
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
Bert在微博短文本情感分类中的应用与优化
来源期刊
小型微型计算机系统
学科
关键词
微博
情感分类
Bert
困难样本
Focal Loss
Bert-FL
年,卷(期)
2021,(4)
所属期刊栏目
人工智能与算法研究|Artificial Intelligence and Algorithms Research
研究方向
页码范围
714-718
页数
5页
分类号
TP391
字数
语种
中文
DOI
10.3969/j.issn.1000-1220.2021.04.007
五维指标
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(7)
共引文献
(18)
参考文献
(3)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1997(1)
参考文献(0)
二级参考文献(1)
2012(1)
参考文献(0)
二级参考文献(1)
2013(2)
参考文献(0)
二级参考文献(2)
2015(1)
参考文献(0)
二级参考文献(1)
2016(1)
参考文献(0)
二级参考文献(1)
2018(4)
参考文献(3)
二级参考文献(1)
2021(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
微博
情感分类
Bert
困难样本
Focal Loss
Bert-FL
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
主办单位:
中国科学院沈阳计算技术研究所
出版周期:
月刊
ISSN:
1000-1220
CN:
21-1106/TP
开本:
大16开
出版地:
辽宁省沈阳市东陵区南屏东路16号
邮发代号:
8-108
创刊时间:
1980
语种:
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
期刊文献
相关文献
1.
结合情感词网的中文短文本情感分类
2.
融合主题的CLSTM短文本情感分类
3.
基于语义的微博短文本倾向性分析研究
4.
基于ConvLSTM模型的短文本情感分类研究
5.
基于复杂句式短文本情感分类研究
6.
集成学习在短文本分类中的应用研究
7.
基于回应消息的中文微博情感分类方法
8.
有效的中文微博短文本倾向性分类算法
9.
基于BERT-AWC的文本分类方法研究
10.
基于教学评价的中文短文本情感分析
11.
面向中文短文本情感分析的改进特征选择算法
12.
CNN-ELM混合短文本分类模型
13.
基于短文本及情感分析的微博舆情分析
14.
面向微博短文本的细粒度情感特征抽取方法
15.
基于Focal Loss-2函数的中文短文本情感分类研究
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
小型微型计算机系统2022
小型微型计算机系统2021
小型微型计算机系统2020
小型微型计算机系统2019
小型微型计算机系统2018
小型微型计算机系统2017
小型微型计算机系统2016
小型微型计算机系统2015
小型微型计算机系统2014
小型微型计算机系统2013
小型微型计算机系统2012
小型微型计算机系统2011
小型微型计算机系统2010
小型微型计算机系统2009
小型微型计算机系统2008
小型微型计算机系统2007
小型微型计算机系统2006
小型微型计算机系统2005
小型微型计算机系统2004
小型微型计算机系统2003
小型微型计算机系统2002
小型微型计算机系统2001
小型微型计算机系统2000
小型微型计算机系统1999
小型微型计算机系统2021年第9期
小型微型计算机系统2021年第8期
小型微型计算机系统2021年第7期
小型微型计算机系统2021年第6期
小型微型计算机系统2021年第5期
小型微型计算机系统2021年第4期
小型微型计算机系统2021年第3期
小型微型计算机系统2021年第2期
小型微型计算机系统2021年第10期
小型微型计算机系统2021年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号