基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在传统司法领域,刑期判决不可避免地会受到法官主观判断的影响,从而使得在相似案情的情况下判决结果有所不同,甚至极端情况会出现矛盾,即量刑偏差问题.通过大量样本应用神经网络进行刑期预测在一定程度上可以改善量刑偏差的问题,但是由于量刑偏差对数据集质量的影响,从而使得直接使用神经网络进行刑期预测的效果不佳.为减少训练神经网络所需要的大量样本数据以及量刑数据偏差干扰,提出了一种基于先验知识生成虚拟样本与BP神经网络结合进行刑期预测的方法.以预测盗窃罪刑期为对象,在小样本上进行实验,结果证明此方法可以有效改善BP神经网络在小样本刑期预测上的表现,可以使刑期预测相对准确率提升8%,平均绝对误差降低四个月,减少了主观误差对刑期判决的影响,为小样本刑期预测提供一种有效的方法.
推荐文章
基于先验知识与模块性的网络社区结构探测算法
社会网络
社区结构
模块性
探测算法
基于小样本集弱学习规则的KNN分类算法
机器学习
K-最近邻分类
小样本集
标签数据
弱学习规则
一种基于小样本数据的装备故障预测方法
小样本
故障预测
支持向量机
相关向量机
支持向量机在小样本预测中的应用
支持向量机
统计学习
预测
人工神经网络
核函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于先验知识的小样本刑期预测算法研究
来源期刊 计算机技术与发展 学科 工学
关键词 先验知识 虚拟样本 小样本 神经网络 刑期预测
年,卷(期) 2021,(2) 所属期刊栏目 应用前沿与综合
研究方向 页码范围 138-142
页数 5页 分类号 TP183
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2021.02.026
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (8)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
先验知识
虚拟样本
小样本
神经网络
刑期预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导