基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为准确预测蟹塘溶解氧质量浓度,及时掌握溶解氧质量浓度的变化趋势,提前采取防控措施从而降低河蟹养殖风险,提出了一种基于粒子群优化算法(PSO)和长短时记忆神经网络(LSTM)的蟹塘溶解氧质量浓度预测模型,采用PSO算法优化LSTM模型参数后对蟹塘溶解氧质量浓度进行预测.结果表明,PSO-LSTM模型不仅整体优于ARIMA模型,相较于其他LSTM模型也有更高的预测精度,在连续10个时间点的预测中相比于LDO-LSTM、LSTM和ARIMA模型平均百分误差分别降低了2.55%、1.891%和4.055%.说明PSO-LSTM模型在蟹塘溶解氧质量浓度预测中具有良好的准确性和稳定性,可以为河蟹养殖中水质精准预测与调控提供参考.
推荐文章
基于PSO优化RBF神经网络的溶解氧预测算法研究
渔业养殖
物联网
径向基函数神经网络
粒子群算法
溶解氧预测
基于长短时记忆神经网络的带钢酸洗浓度预测
浓度预测
带钢酸洗
深度学习
长短期记忆
神经网络
基于长短时记忆神经网络的水库洪水预报
洪水预报
长短时记忆神经网络
预见期
训练速度
白盆珠水库
基于混沌粒子群算法的神经网络短时交通流预测
交通流量
预测
混沌粒子群
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化算法和长短时记忆神经网络的蟹塘溶解氧预测
来源期刊 江苏农业学报 学科
关键词 溶解氧预测 河蟹养殖 粒子群优化算法 长短时记忆神经网络
年,卷(期) 2021,(2) 所属期刊栏目 畜牧兽医·水产养殖|ANIMAL HUSBANDRY AND VETERINARY SCIENCES·AQUICULTURE
研究方向 页码范围 426-434
页数 9页 分类号 S126
字数 语种 中文
DOI 10.3969/j.issn.1000-4440.2021.02.020
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (194)
共引文献  (311)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(10)
  • 参考文献(1)
  • 二级参考文献(9)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(14)
  • 参考文献(0)
  • 二级参考文献(14)
2011(15)
  • 参考文献(0)
  • 二级参考文献(15)
2012(17)
  • 参考文献(1)
  • 二级参考文献(16)
2013(12)
  • 参考文献(1)
  • 二级参考文献(11)
2014(15)
  • 参考文献(0)
  • 二级参考文献(15)
2015(15)
  • 参考文献(0)
  • 二级参考文献(15)
2016(18)
  • 参考文献(2)
  • 二级参考文献(16)
2017(21)
  • 参考文献(1)
  • 二级参考文献(20)
2018(20)
  • 参考文献(4)
  • 二级参考文献(16)
2019(9)
  • 参考文献(5)
  • 二级参考文献(4)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
溶解氧预测
河蟹养殖
粒子群优化算法
长短时记忆神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江苏农业学报
双月刊
1000-4440
32-1213/S
大16开
南京市孝陵卫钟灵街50号省农科院内
28-113
1985
chi
出版文献量(篇)
3989
总下载数(次)
8
总被引数(次)
36498
论文1v1指导