基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
不平衡数据学习是机器学习中一个研究热点,近年来得到广泛的关注.以SMOTE为代表的过采样方法是不平衡数据学习的主流方法之一,近年来涌现出大量的基于SMOTE的改进过采样方法.但是,当前对过采样的研究中,如何利用样本分布信息,实现高效的过采样,仍然是一个具有挑战的问题.本文提出一种有监督的样本空间分布学习方法,用以学习少数类样本的局部邻域信息,并以局部邻域信息约束过采样过程中样本的合成,以降低线性插值可能带来的噪声以及样本重叠等不利因素,从而提高过采样的效率.在典型不平衡数据集上的实验表明,利用少数类样本邻域信息为约束,能有效提升过采样的效率.
推荐文章
不平衡数据集的分类方法研究
机器学习
不平衡数据
数据分类
剪枝与欠采样相结合的不平衡数据分类方法
机器学习
不平衡数据集
剪枝技术
欠采样技术
交叉验证
合并分类器增强算法
基于样本投影分布的平衡不平衡数据集分类
平衡不平衡数据集
样本投影分布
支持向量机
支持向量数据描述
面向类不平衡数据集的软件缺陷预测模型
软件缺陷预测
类不平衡数据
特征选择
集成算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 邻域感知的不平衡数据集过采样方法
来源期刊 小型微型计算机系统 学科
关键词 不平衡学习 过采样 SMOTE 邻域信息 噪声样本
年,卷(期) 2021,(7) 所属期刊栏目 人工智能与算法研究|Artificial Intelligence and Algorithms Research
研究方向 页码范围 1360-1370
页数 11页 分类号 TP18
字数 语种 中文
DOI 10.3969/j.issn.1000-1220.2021.07.003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (174)
参考文献  (27)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(7)
  • 参考文献(2)
  • 二级参考文献(5)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(2)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(9)
  • 参考文献(1)
  • 二级参考文献(8)
2017(13)
  • 参考文献(2)
  • 二级参考文献(11)
2018(10)
  • 参考文献(4)
  • 二级参考文献(6)
2019(5)
  • 参考文献(4)
  • 二级参考文献(1)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
不平衡学习
过采样
SMOTE
邻域信息
噪声样本
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导