基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
文本情感分析是自然语言处理的重要部分,但现有的文本情感分析方法均有其不足.为了使各个方法进行互补,提出了一种融合改进Stacking与规则的文本情感分析方法Stacking-I.该方法在Stacking集成算法的基础上进行改进,融合了两种主流的情感分析方法:文本规则方法和机器学习方法.在不同的3组网络评论文本上进行实验,证明该方法在网络评论文本情感分析实验中表现良好且有较高的准确率,其准确率高于传统机器学习方法、其它集成算法以及深度学习方法,最高可达91.700%,并且在不同数据量的基础上,通过大量实验和时间复杂度对比,得到了针对网络文本情感分析最佳的Stacking-I算法配置.
推荐文章
融合CHI与信息增益的情感文本特征选择
卡方统计量(CHI)
信息增益
特征选择
情感文本
随机森林
支持向量机
融合句子情感和主题相似性的中文新闻文本情感摘要
情感摘要
句子情感
LexRank
句子特征
主题相似性
面向中文短文本情感分析的改进特征选择算法
特征选择
情感分析
词频逆文本频率指数
信息增益
中文短文本
基于多特征融合的评论文本情感分析
文本情感分析
多特征融合
机器学习
情感规则
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合改进Stacking与规则的文本情感分析
来源期刊 小型微型计算机系统 学科
关键词 文本情感分析 Stacking算法 情感词典 机器学习 自然语言处理
年,卷(期) 2021,(7) 所属期刊栏目 人工智能与算法研究|Artificial Intelligence and Algorithms Research
研究方向 页码范围 1389-1395
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1000-1220.2021.07.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (70)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(6)
  • 参考文献(3)
  • 二级参考文献(3)
2017(5)
  • 参考文献(0)
  • 二级参考文献(5)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本情感分析
Stacking算法
情感词典
机器学习
自然语言处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导