基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在移动边缘计算任务卸载问题中,传统卸载算法仅考虑移动设备和边缘服务器计算资源,在资源利用、系统效能上存在一定的局限性.该文基于RainbowDQN算法,考虑了延迟、能耗成本和服务质量保证等因素,提出了一种边缘云协同串行任务卸载算法(ECWS-RDQN).该算法通过对串行任务的权重分配,实现了网络边缘和云端协同的串行任务动态分配处理,为不同的用户设备应用提供近似最优的任务分配卸载策略.实验表明,ECWS-RDQN算法比传统方案有更好的系统效能,提升了应用的服务质量.
推荐文章
基于强化学习的移动边缘计算任务卸载方法
强化学习方法
Q-Learning算法
移动边缘
计算任务卸载
卸载模型
基于深度强化学习的图像修复算法设计
图像修复
机器学习
深度强化学习
大数据
自相似
关联性
基于深度强化学习的服务功能链映射算法
网络功能虚拟化
服务功能链
深度强化学习
网络时延
网络运维开销
基于深度强化学习的车辆多目标协同巡航决策控制系统设计
深度强化学习
车辆多目标
协同巡航
决策控制
轨迹跟踪器
多目标解耦
协同参数
量化分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度强化学习的边云协同串行任务卸载算法
来源期刊 电子科技大学学报 学科
关键词 深度Q网络 边云协同 移动边缘计算 串行任务 任务卸载算法
年,卷(期) 2021,(3) 所属期刊栏目 计算机工程与应用|Computer Engineering and Applications
研究方向 页码范围 398-404
页数 7页 分类号 TP181
字数 语种 中文
DOI 10.12178/1001-0548.2021015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (101)
共引文献  (30)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(17)
  • 参考文献(0)
  • 二级参考文献(17)
2017(30)
  • 参考文献(0)
  • 二级参考文献(30)
2018(18)
  • 参考文献(3)
  • 二级参考文献(15)
2019(12)
  • 参考文献(1)
  • 二级参考文献(11)
2020(4)
  • 参考文献(3)
  • 二级参考文献(1)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度Q网络
边云协同
移动边缘计算
串行任务
任务卸载算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子科技大学学报
双月刊
1001-0548
51-1207/T
大16开
成都市成华区建设北路二段四号
62-34
1959
chi
出版文献量(篇)
4185
总下载数(次)
13
总被引数(次)
36111
论文1v1指导