基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有基于深度神经网络的辐射源识别算法受训练场景限制,当待测信号与训练数据集的信道环境噪声不一致时,网络的识别性能严重退化.为了克服该问题,本文提出一种基于迁移学习的辐射源个体识别算法.该算法结合领域自适应的思想,建立优化模型将不同信噪比下信号的特征对齐,使在特定信噪比下训练的神经网络学习到与信道噪声无关的射频指纹特征,实现对其他信噪比下信号的高准确率识别.仿真实验结果表明,提出的算法显著提升了基于深度神经网络的辐射源个体识别算法在动态噪声条件下的准确率,在待识别信号信噪比下降4dB的情况下,准确率提升了45.18%.
推荐文章
基于调频指数特征的通信辐射源个体识别
辐射源个体识别
调频辐射源
调频指数
特征鲁棒性
基于时频与快速熵的IFF辐射源个体识别方法
敌我识别
辐射源个体识别
时频分析
样本熵
基于核函数支持向量机的雷达辐射源识别
雷达辐射源识别
核函数
支持向量机
基于DBN的辐射源信号识别算法
雷达辐射源
时频变换
识别
深度信念网络
分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于领域自适应的动态噪声辐射源个体识别
来源期刊 信号处理 学科
关键词 辐射源个体识别 深度学习 迁移学习 领域自适应
年,卷(期) 2021,(6) 所属期刊栏目 论文|Papers
研究方向 页码范围 1000-1007
页数 8页 分类号 TN911.7
字数 语种 中文
DOI 10.16798/j.issn.1003-0530.2021.06.012
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (0)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(5)
  • 参考文献(1)
  • 二级参考文献(4)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
辐射源个体识别
深度学习
迁移学习
领域自适应
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
论文1v1指导