基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对深度学习单一模型不能有效处理不确定性预测结果的问题,文中从三支决策出发,将阴影集理论引入图像分类中,构建两阶段图像分类方法.首先,使用卷积神经网络分类样本,获得隶属度矩阵.然后,使用基于阴影集的样本划分算法处理隶属度矩阵,获得分类结果中存在不确定性的部分,即不确定域,进行延迟决策.最后,使用特征融合技术,将SVM作为分类器进行二次分类,降低分类结果的不确定性,提高分类准确率.在CIFAR-10、Caltech 101数据集上的实验验证文中方法的有效性.
推荐文章
基于相容粒模型和三支决策的图像分类算法
相容粒
三支决策
图像分类
基于三支决策的空中目标敌我识别方法
空中目标识别
传感器融合
贝叶斯准则
三支决策
不完备混合决策系统的三支决策模型与规则获取方法
粗糙集
三支决策
不完备混合数据
规则获取
粒计算
基于三支决策的两阶段实体关系抽取研究
实体关系抽取
三支决策
支持向量机(SVM)
K最近邻(KNN)
softmax函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于三支决策的二阶段图像分类方法
来源期刊 模式识别与人工智能 学科
关键词 三支决策 阴影集 卷积神经网络 图像分类 深度学习
年,卷(期) 2021,(8) 所属期刊栏目 研究与应用|Researches and Applications
研究方向 页码范围 768-776
页数 9页 分类号 TP391
字数 语种 中文
DOI 10.16451/j.cnki.issn1003-6059.202108010
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (3)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(4)
  • 参考文献(3)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
三支决策
阴影集
卷积神经网络
图像分类
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导