基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
网络社交的流行与普及,使得微博等短文本区别于以往传统文章,具有了独有的文学表达形式和情感发泄方式,导致基于短文本的机器学习情感分析工作难度逐渐增大.针对微博短文本的语言表达新特性,爬取收集大量无情感标记微博数据,建立微博短文本语料库,基于全局语料库构建词与短文本的全局关系图,使用BERT(Bidirectional Encoder Representations from Transformers)文档嵌入作为图节点的特征值,采用图卷积进行节点间的特征传递和特征提取.采样部分无情感标记微博数据进行人工标注,采用半监督机器学习方法结合全局关系图提高情感分类器的性能,实验表明通过无情感标记数据比例的增加,该方法可以更好地捕捉全局特征,提高情感分类的精度.在自建人工标记数据、COAE2014数据集和NLP&CC2014数据集上进行了对比实验,实验结果表明该方法在精确率和召回率上均具有很好的表现.
推荐文章
基于回应消息的中文微博情感分类方法
中文微博
情感分类
回应消息
支持向量机
基于半监督学习的微博情感分析
情感分析
半监督学习
分类器集成
多特征融合的图文微博情感分析
情感分析
微博
多特征融合
神经网络
图文融合
基于监督学习的微博情感分类方法
微博
情感分类
监督学习
情感词汇本体
同义词词林
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于全局特征图的半监督微博文本情感分类
来源期刊 信号处理 学科
关键词 微博文本 情感分析 图卷积 半监督
年,卷(期) 2021,(6) 所属期刊栏目 论文|Papers
研究方向 页码范围 1066-1074
页数 9页 分类号 TP3
字数 语种 中文
DOI 10.16798/j.issn.1003-0530.2021.06.018
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (21)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
微博文本
情感分析
图卷积
半监督
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
论文1v1指导