基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于编码器-解码器的深度全卷积神经网络在图像语义分割中取得了重大的进展,但是深度网络中网络低层定位信息传播到网络高层路径过长,导致解码阶段难以利用低层定位信息来恢复物体边界结构,针对这一问题,提出了一种应用在分割网络解码器部分的路径聚合结构.该结构缩短了分割网络中低层信息到高层信息的传播路径并提供多尺度的上下文语义信息,使得分割网络能产生更为精细的边界分割结果.针对语义分割中常使用的Softmax交叉熵损失函数对外观相似样本区分能力不足的问题,对Softmax交叉熵损失函数进行改造,提出了双向交叉熵损失函数.本文提出的路径聚合扩张卷积网络结合新的损失函数方法在PASCAL VOC2012Aug数据集上获得了更好的效果,将mIoU值从78.77% 提升到了80.44%.
推荐文章
基于图像分层树的图像语义分割方法
语义分割
图像分层树
多尺度
随机森林
支持向量机
基于卷积神经网络改进的图像自动分割方法
图像分割
卷积神经网络
多尺度特征融合
残差连接
三维重建
基于高阶CRF模型的图像语义分割
计算机视觉
图像语义分割
条件随机场模型
高阶能量项
基于可形变部件模型
基于可分离空洞卷积与联合归一化的语义分割算法研究
图像语义分割
可分离空洞卷积
实例归一化
批量归一化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于路径聚合扩张卷积的图像语义分割方法
来源期刊 计算机工程与科学 学科
关键词 图像语义分割 双向交叉熵 路径聚合结构 多尺度预测 深度学习
年,卷(期) 2021,(4) 所属期刊栏目 图形与图像
研究方向 页码范围 712-720
页数 9页 分类号 TP391.4
字数 语种 中文
DOI 10.3969/j.issn.1007-130X.2021.04.018
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像语义分割
双向交叉熵
路径聚合结构
多尺度预测
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导