基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提升智能驾驶系统的纵向跟车性能,本文构建了一种基于深度强化学习的驾驶员跟车模型.首先,设计了跟车场景截取准则并从自然驾驶数据中筛选出符合条件的典型跟车场景,并对其数据进行统计分析,即采用相关系数法分析了车间距、相对速度和车头时距等因素对驾驶员跟车行为的影响机理,得出驾驶员跟车行驶过程的行为特性及其影响因素.接着,基于深度确定性策略梯度算法建立了驾驶员跟车模型,将驾驶员跟车轨迹数据集输入到模拟跟车环境中,让智能体从经验数据中学习驾驶员的决策行为.最后,以原始工况数据为基准,对基于深度强化学习的跟车模型进行对比仿真验证,结果表明所构建的驾驶员跟车模型具有良好的跟踪性能,能真实地复现驾驶员的跟车行为.
推荐文章
基于大脑情感学习回路的驾驶员模型研究
车辆工程
驾驶员模型
两点预瞄
大脑情感学习回路
虚拟驾驶员视觉感知模型研究
视觉感知
行为建模
注意力
记忆力
驾驶疲劳
基于二次Lasso回归的纵向驾驶员模型研究
车辆性能
回归分析
纵向驾驶员模型
Lasso回归
工况跟随
基于动态神经网络集成的驾驶员行为学习算法
智能交通
驾驶员行为
动态神经网络集成
学习
仿真
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度强化学习的驾驶员跟车模型研究
来源期刊 汽车工程 学科
关键词 智能驾驶 驾驶员模型 跟车 深度强化学习
年,卷(期) 2021,(4) 所属期刊栏目
研究方向 页码范围 571-579
页数 9页 分类号
字数 语种 中文
DOI 10.19562/j.chinasae.qcgc.2021.04.015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (34)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1961(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(9)
  • 参考文献(3)
  • 二级参考文献(6)
2016(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(4)
  • 参考文献(2)
  • 二级参考文献(2)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能驾驶
驾驶员模型
跟车
深度强化学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汽车工程
月刊
1000-680X
11-2221/U
大16开
北京市西城区莲花池东路102号天连大厦1003室
2-341
1979
chi
出版文献量(篇)
4728
总下载数(次)
23
总被引数(次)
66645
论文1v1指导