基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 利用卷积神经网络自动识别正常及异常甲状腺超声图.方法 使用我院超声医学科2018年1月至2018年10月甲状腺超声图像资料,分为正常甲状腺、甲状腺局限性病变、甲状腺弥漫性病变、甲状腺弥漫合并局限性病变四类进行标注,以Mask R-CNN算法进行训练,在训练过程中加入基于级联网络改进.统计和汇总采用python完成,目标检测及分割采用平均精度及标准交并比评价,分类采用敏感度、特异性、准确度及一致性评价.结果 共使用甲状腺图像47206幅,Mask R-CNN及基于级联网络结构的Mask R-CNN算法的平均精确度为79.21%、84.51%,标准交并比为87.78%、89.26%.在基于级联的Mask R-CNN算法中甲状腺超声图像分类效能较高,敏感度、特异度、准确度、一致性检验在正常甲状腺分别为83.98%、93.93%、91.84%、0.76,局限性病变中为85.09%、94.12%、90、36%、0.79,弥漫性病变中为86.00%、97.11%、94.29%、0.84,弥漫合并局限性病变中为82.99%、94.55%、93.16%、0.70.结论 基于级联的Mask R-CNN算法对甲状腺超声图像的目标检测及分割能力较高,对于自动识别二维灰阶正常甲状腺、甲状腺局限性疾病、甲状腺弥漫性病变、甲状腺弥漫合并局限性疾病有较好的效果.
推荐文章
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积神经网络识别正常及异常甲状腺超声图像的价值
来源期刊 四川医学 学科
关键词 甲状腺疾病 超声图像 深度学习 Mask R-CNN
年,卷(期) 2021,(3) 所属期刊栏目 超声医学
研究方向 页码范围 305-309
页数 5页 分类号 R445.1
字数 语种 中文
DOI 10.16252/j.cnki.issn1004-0501-2021.03.021
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (2)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
甲状腺疾病
超声图像
深度学习
Mask R-CNN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川医学
月刊
1004-0501
51-1144/R
大16开
成都市上汪家拐街39号
62-103
1980
chi
出版文献量(篇)
17843
总下载数(次)
15
总被引数(次)
60788
论文1v1指导