Aggregate engineering of non-covalent networks endows supramolecular polymers with thermo-mechanical versatility,stimuli-responsive phase transitions and intrinsic damage-healing capabilities.However,most non-covalent networks are vulnerable at elevated temperatures,which suppresses the robustness of supramolecular polymers.Herein,ureidocytosine (UCy) motifs,which are capable of forming extensive non-covalent networks and thus robust molecular aggregates via multivalent hydrogen bonds and aromatic stackings,are proposed to enable precise programming of the thermo-mechanical versatility.Molecular simulations reveal that the enthalpic contributions from the UCy aggregates play dominant roles to compensate the entropic loss from the redistributions of polymeric spacers and stabilize the non-covalent networks over wide temperature windows.Such aggregate-level strategy offers prospects for applications which require thermo-mechanical versatility of supramolecular polymers,such as 3D printing,microfabrication and damage-healing coating.