基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
法律文书命名实体识别是智慧司法领域的关键性和基础性任务.在目前法律文书命名实体识别方法中,存在实体定义与司法业务结合不紧密、传统词向量无法解决一词多义等问题.针对以上问题,该文提出一种新的法律文本命名实体定义方案,构建了基于起诉意见书的法律文本命名实体语料集LegalCorpus;提出一种基于BERT-ON-LSTM-CRF(Bidirectional Encoder Representations from Transformers-Ordered Neuron-Long Short Term Memory Networks-Conditional Random Field)的法律文书命名实体识别方法,该方法首先利用预训练语言模型BERT根据字的上下文动态生成语义向量作为模型输入,然后运用ON-LSTM对输入进行序列和层级建模以提取文本特征,最后利用CRF获取最优标记序列.在LegalCorpus上进行实验,该文提出的方法F1值达到86.09%,相比基线模型lattice LSTM F1值提升了7.8%.实验结果表明,该方法可以有效对法律文书的命名实体进行识别.
推荐文章
基于位置敏感Embedding的中文命名实体识别
命名实体识别
表示学习
Embedding
多尺度聚类
条件随机场
一种基于命名实体识别的需求跟踪方法
需求跟踪
命名实体识别
语义聚类
自然语言处理
权重计算
融合词位字向量的军事领域命名实体识别
军事
命名实体识别
词位字向量
BI-GRU-CRF
深度神经网络
序列标注
基于条件随机场的汉语命名实体识别
可视化工作室2008
条件随机场
汉语分词
命名实体识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BERT的盗窃罪法律文书命名实体识别方法
来源期刊 中文信息学报 学科
关键词 BERT 法律文书 命名实体识别 有序神经元
年,卷(期) 2021,(8) 所属期刊栏目 信息抽取与文本挖掘|Information Extraction and Text Mining
研究方向 页码范围 73-81
页数 9页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1003-0077.2021.08.010
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (72)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(9)
  • 参考文献(4)
  • 二级参考文献(5)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BERT
法律文书
命名实体识别
有序神经元
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
论文1v1指导