为了实现铝板表面缺陷智能识别分类,解决支持向量机在识别过程中准确率不高的问题,对核主成分分析(Kernel Principal Component Analysis,KPCA)和最小二乘支持向量机(Least Square Support Vector Ma-chine,LSSVM)在缺陷深度识别分类的应用进行了研究.采用核主成分分析算法对实验获取的激光超声信号进行时域特征参数提取主成分,并将多个满足要求的主成分作为输入,建立KPCA-LSSVM分类模型对表面缺陷进行识别.结果表明,该模型精准率和召回率高于优化前的系统,识别准确率达到了95%.