基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的情感分析方法不能获取全局特征,以及否定词、转折词和程度副词的出现影响句子极性判断.在深度学习方法基础上提出了基于卷积神经网络和双向门控循环单元网络注意力机制的短文本情感分析方法.将情感积分引入卷积神经网络,利用情感词自身信息,通过双向门控循环网络模型获取全局特征,对影响句子极性的否定词、转折词和程度副词引入注意力机制实现对这类词的重点关注,提取影响句子极性的重要信息.实验结果表明,该模型与现有相关模型相比,有效提高情感分类的准确率.
推荐文章
基于卷积神经网络和注意力模型的文本情感分析
社交网络
文本情感分析
卷积神经网络
注意力模型
采用循环神经网络的情感分析注意力模型
情感分析
循环神经网络
注意力
长短时记忆
基于循环神经网络和注意力模型的文本情感分析
文本情感分析
深度学习
长短期记忆模型
注意力模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络和双向门控循环单元网络注意力机制的情感分析
来源期刊 科学技术与工程 学科 工学
关键词 深度学习 双向门控循环单元(Bi-GRU) 注意力机制 卷积神经网络 情感分析
年,卷(期) 2021,(1) 所属期刊栏目 论文
研究方向 页码范围 269-274
页数 6页 分类号 TP393.01
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (43)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(9)
  • 参考文献(2)
  • 二级参考文献(7)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(9)
  • 参考文献(0)
  • 二级参考文献(9)
2018(10)
  • 参考文献(1)
  • 二级参考文献(9)
2019(6)
  • 参考文献(4)
  • 二级参考文献(2)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
双向门控循环单元(Bi-GRU)
注意力机制
卷积神经网络
情感分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科学技术与工程
旬刊
1671-1815
11-4688/T
大16开
北京市海淀区学院南路86号
2-734
2001
chi
出版文献量(篇)
30642
总下载数(次)
83
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导