钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机工程与科学期刊
\
基于集成分类型深度神经网络的视网膜眼底血管图像分割
基于集成分类型深度神经网络的视网膜眼底血管图像分割
作者:
蒋芸
王发林
张海
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
深度学习
卷积神经网络
图像分割
集成学习
摘要:
视网膜血管检测在眼底疾病的诊断和治疗中具有重要的临床价值.但是,由于眼底图像特征的复杂性和多样性,大部分的视网膜分割方法存在血管分割性能低、抗噪声干扰能力弱和对病灶敏感等问题,为此,提出了一种集成深度分类神经网络对像素点分类的方法.首先利用不同的残差网络模型来分类像素点,获得血管分割图像;然后通过集成学习的方法对各个模型的分割结果进行处理,获得最终的视网膜血管分割图像.在STARE、DRIVE和CHASE数据集上的实验仿真结果显示,分割准确率分别达到97.36%,95.57%,96.36%,特异性分别达到98.06%,97.76%,97.84%,F-measure分别达到84.98%,82.25%,79.87%.比R2U_Net的F-measure分别提高了0.23%,0.54%,0.59%.
暂无资源
收藏
引用
分享
推荐文章
BP神经网络在眼底造影图像分割中的应用
BP神经网络
图像分割
眼底造影图像
基于改进的U-Net眼底视网膜血管分割
U型网络
视网膜
血管分割
形态学滤波
基于眼底图像的视网膜血管分割方法综述
眼底图像
视网膜
血管分割方法
监督方法
深度学习
神经网络训练
基于PST和多尺度高斯滤波的视网膜血管的分割
视网膜血管
相位拉伸变换
多尺度
血管分割
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于集成分类型深度神经网络的视网膜眼底血管图像分割
来源期刊
计算机工程与科学
学科
关键词
深度学习
卷积神经网络
图像分割
集成学习
年,卷(期)
2021,(5)
所属期刊栏目
图形与图像
研究方向
页码范围
862-871
页数
10页
分类号
TP391.4
字数
语种
中文
DOI
10.3969/j.issn.1007-130X.2021.05.013
五维指标
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(0)
共引文献
(0)
参考文献
(27)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1952(1)
参考文献(1)
二级参考文献(0)
1992(1)
参考文献(1)
二级参考文献(0)
1998(1)
参考文献(1)
二级参考文献(0)
1999(1)
参考文献(1)
二级参考文献(0)
2000(1)
参考文献(1)
二级参考文献(0)
2004(1)
参考文献(1)
二级参考文献(0)
2007(2)
参考文献(2)
二级参考文献(0)
2009(2)
参考文献(2)
二级参考文献(0)
2010(1)
参考文献(1)
二级参考文献(0)
2011(2)
参考文献(2)
二级参考文献(0)
2012(1)
参考文献(1)
二级参考文献(0)
2013(1)
参考文献(1)
二级参考文献(0)
2014(1)
参考文献(1)
二级参考文献(0)
2015(5)
参考文献(5)
二级参考文献(0)
2016(1)
参考文献(1)
二级参考文献(0)
2017(1)
参考文献(1)
二级参考文献(0)
2018(2)
参考文献(2)
二级参考文献(0)
2019(2)
参考文献(2)
二级参考文献(0)
2021(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
图像分割
集成学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
主办单位:
国防科学技术大学计算机学院
出版周期:
月刊
ISSN:
1007-130X
CN:
43-1258/TP
开本:
大16开
出版地:
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
邮发代号:
42-153
创刊时间:
1973
语种:
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
期刊文献
相关文献
1.
BP神经网络在眼底造影图像分割中的应用
2.
基于改进的U-Net眼底视网膜血管分割
3.
基于眼底图像的视网膜血管分割方法综述
4.
基于PST和多尺度高斯滤波的视网膜血管的分割
5.
基于滑动块的深度卷积神经网络乳腺X线摄影图像肿块分割算法
6.
基于深度卷积神经网络的车标分类
7.
基于监督的全卷积神经网络视网膜血管分割
8.
基于BP神经网络管道裂缝图像分割
9.
基于改进神经网络的图像边缘分割技术
10.
基于神经网络的图像分类算法
11.
基于深度卷积神经网络的织物花型分类
12.
深度卷积神经网络在放射治疗计划图像分割中的应用
13.
基于卷积神经网络的军事图像分类
14.
基于改进BP神经网络的白细胞图像分割
15.
基于深度学习和二维高斯拟合的视网膜血管管径测量方法
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机工程与科学2022
计算机工程与科学2021
计算机工程与科学2020
计算机工程与科学2019
计算机工程与科学2018
计算机工程与科学2017
计算机工程与科学2016
计算机工程与科学2015
计算机工程与科学2014
计算机工程与科学2013
计算机工程与科学2012
计算机工程与科学2011
计算机工程与科学2010
计算机工程与科学2009
计算机工程与科学2008
计算机工程与科学2007
计算机工程与科学2006
计算机工程与科学2005
计算机工程与科学2004
计算机工程与科学2003
计算机工程与科学2002
计算机工程与科学2001
计算机工程与科学2000
计算机工程与科学2021年第9期
计算机工程与科学2021年第8期
计算机工程与科学2021年第7期
计算机工程与科学2021年第6期
计算机工程与科学2021年第5期
计算机工程与科学2021年第4期
计算机工程与科学2021年第3期
计算机工程与科学2021年第2期
计算机工程与科学2021年第12期
计算机工程与科学2021年第10期
计算机工程与科学2021年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号